首页> 外文期刊>Journal of Nuclear Materials: Materials Aspects of Fission and Fusion >Alloying effects on low-energy recoil events in concentrated solid-solution alloys
【24h】

Alloying effects on low-energy recoil events in concentrated solid-solution alloys

机译:合金对浓浓固溶体合金中低能反冲事件的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Alloying elements at low-concentrations into pure metals is usually adopted to improve their mechanical properties and irradiation performance. Recently developed single-phase concentrated solid-solution alloys (CSAs) comprised of two or more elements, all at high concentrations, have demonstrated good radiation resistance. CSAs are characterized by their extreme disordered states that arise from the random arrangement of different elements and accompanied random local lattice distortions. In this work, we investigate low-energy recoil events in Ni0.5X0.5 (X = Fe and Co) CSAs and Ni0.8X0.2 (X = Fe, Co, Cr, and Pd) CSAs using ab initio molecular dynamics simulations to understand the effects of different disorder on defect production in CSAs. The threshold displacement energies are determined along three high-symmetric directions by randomly choosing independent primary knock-on atoms in each direction. As expected, the threshold energies in Ni and its CSAs are anisotropic, with the highest values found in the [111] direction. The calculated threshold energies of Fe in NiFe are smaller than those in NiCo and Ni, especially along the [111] direction. An inspection of the atomic trajectories inside the collision cascade reveals that the effect of chemical disorder outweighs the site-to-site lattice distortions in determining the threshold energies. Especially, different interaction properties between elements due to their different electronic structures are responsible for the observed different threshold energies. The local environment dependence of threshold energies suggests that local elemental arrangement can be used to understand and predict threshold energies in disordered alloys. (C) 2019 Elsevier B.V. All rights reserved.
机译:通常采用低浓度为纯金属的合金元素来改善其机械性能和辐照性能。最近开发了由两种或更多种元素组成的单相浓度固溶合金(CSA),全部以高浓度呈现出良好的辐射抗性。 CSA的特征在于它们的极端无序状态,从不同元素的随机排列和随机局部格子扭曲中出现。在这项工作中,我们使用AB Initio分子动力学模拟调查Ni0.5x0.5(x = Fe和Co)CSA和Ni0.8x0.2(x = Fe,Co,Cr和Pd)CSA中的低能量反冲事件了解不同疾病对CSA缺陷产量的影响。阈值位移能量通过在每个方向上随机选择独立的主敲击原子来沿三个高对称方向确定。正如预期的那样,NI及其CSA中的阈值能量是各向异性的,在[111]方向上发现了最高值。 NiFe中Fe的计算阈值能量小于Nico和Ni中的Fe,特别是沿着[111]方向。在碰撞级联内部的原子轨迹检查表明,化学障碍的效果超过了在确定阈值能量时的现场到现场的晶格畸变。特别地,由于其不同的电子结构导致的元件之间的不同相互作用特性负责观察到的不同阈值能量。阈值能量的本地环境依赖性表明,局部元素布置可用于理解和预测无序合金中的阈值能量。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号