首页> 外文期刊>Journal of Nuclear Materials: Materials Aspects of Fission and Fusion >Modelling of deuterium retention and outgassing in self-damaged tungsten under low-energy atomic D flux irradiation: The effects of surface processes
【24h】

Modelling of deuterium retention and outgassing in self-damaged tungsten under low-energy atomic D flux irradiation: The effects of surface processes

机译:低能量原子D通量辐照下自损钨氘保留和除气的建模:表面过程的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Deuterium (D) outgassing and retention in self-damaged tungsten (W) during low-energy D atom irradiation are systematically studied using an upgraded version of the Hydrogen Isotope Inventory Processes Code (HIIPC) with the implementation of a surface module. The surface module due to the existence of chemisorption site is mainly characterized by the surface-energy barriers of D adsorption and absorption. The simulated total D amount is in good agreement with the experimental measurement. The impact of surface dynamics on the surface retention and total bulk retention is investigated. The simulation shows that total bulk retention first increases and then decreases with the increment of material temperature (T) due to surface effects. With the increment of surface energy barriers, the saturation of surface retention is observed. With low energy barrier, surface process shows a dominant role in bulk D retention. The effect of surface barriers on D outgassing is also studied. The results suggest that variations of surface energy barriers have a significant influence on D outgassing, which is linked to fuel recycling. Simulation reveals that fuel recycling greatly depends on T and irradiation flux before surface saturation, and total bulk retention shows a remarkable dependence on the permeation barrier. Saturation of total bulk retention is observed with low permeation barrier, whereas high permeation barrier could decrease the uptake of D due to the buildup of strong inhibition on surface, thus remarkably reduce total bulk retention. (C) 2020 Elsevier B.V. All rights reserved.
机译:使用升级版本的氢同位素库存处理代码(HIIPC)的升级版本来系统地研究了在低能量D原子辐射期间的氘(D)在低能量D原子辐射期间的氘(W)的放气和保留。由于化学吸附位点的存在,表面模块主要是D吸附和吸收的表面能屏障。模拟总D量与实验测量吻合良好。研究了表面动力学对表面潴留和总散装保留的影响。仿真显示,总散装保留首先增加,然后随着表面效应而随着材料温度(T)的增量而降低。随着表面能屏障的增量,观察到表面保持的饱和度。通过低能量屏障,表面过程显示散装D保留中的主要作用。还研究了表面屏障对D分散的影响。结果表明,表面能屏障的变化对D分散有显着影响,这与燃料再循环有关。仿真揭示了燃料回收极大地取决于表面饱和前的T和辐射通量,并且总散装保留显示出对渗透屏障的显着依赖性。通过低渗透屏障观察到总散装保持的饱和度,而高渗透屏障可能会降低D由于表面上强烈抑制的累积而降低,因此显着降低了总散装保留。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号