...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >The critical role of oxygen-evolution kinetics in the electrochemical stability of oxide superionic conductors
【24h】

The critical role of oxygen-evolution kinetics in the electrochemical stability of oxide superionic conductors

机译:氧 - 进化动力学在氧化物外导体电化学稳定性中的关键作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Fast ion-conducting solid electrolytes could potentially overcome two key limitations of liquid electrolytes used in today's battery systems, namely, their flammability and limited electrochemical stability. In addition to high ionic conductivity, achieving a wide electrochemical window (EW) to suppress electronic transport (self-discharge and short circuiting) is particularly challenging. The superionic conductor Li7La3Zr2O12 (LLZO) exhibits a wide EW (>5.0 V) while maintaining a good ionic conductivity of similar to 10(-4) mS cm(-1), and serves as a model for promising superionic conductors. However, the physical origin of its electrochemical stability is not fully understood. Here, density functional theory (DFT) calculations demonstrated that a major contribution to the wide EW in LLZO originated from the high-barrier kinetics of electrochemical oxygen evolution. The high reaction barrier is attributed to electron holes occurring above the Fermi level, which is consistent with the high-voltage anionic redox potential. Based on the electron-hole relaxation capacity and polyhedral rigidity, we establish a combined charge and bond distance parameter q/r(3) which serves as the design principle for regulating electrochemical stability. Based on this principle, LLZO compounds with Nd3+, In3+, Sb3+, and Y3+ substituted in the Zr4+ site are predicted to have a wider electrochemical window of >5.5 V or even higher. The established anionic electrochemical mechanism for improving the electrochemical stability provides new insight into rationally designing and optimizing electrochemically stable superionic conductors.
机译:快速离子导电固体电解质可能克服当今电池系统中使用的液体电解质的两个关键限制,即它们的可燃性和电化学稳定性有限。除了高离子电导率之外,实现宽的电化学窗口(EW)以抑制电子传输(自放电和短路)尤其具有挑战性。上表面导体Li7La3zR2O12(LLZO)显示出宽的Ew(> 5.0V),同时保持与10(-4)MS CM(-1)类似的良好离子电导率,并且用作有前途的外层导体的模型。然而,其电化学稳定性的物理来源不完全理解。这里,密度泛函理论(DFT)计算表明,LLZO中宽ew的主要贡献来自电化学氧气进化的高屏障动力学。高反应屏障归因于在FERMI水平上方发生的电子孔,这与高压阴离子氧化还原电位一致。基于电子 - 孔弛豫容量和多面体刚性,我们建立了一种组合电荷和粘接距离参数Q / R(3),其用作调节电化学稳定性的设计原理。基于该原理,预计Zr4 +位点中的Nd3 +,In3 +,Sb3 +和Y3 +的Llzo化合物具有较宽的电化学窗口> 5.5V或甚至更高。用于改善电化学稳定性的建立的阴离子电化学机理提供了新的洞察合理设计和优化电化学稳定的外膜导体。

著录项

  • 来源
  • 作者单位

    Chinese Acad Sci Shanghai Inst Ceram State Key Lab High Performance Ceram &

    Superfine 1295 Dingxi Rd Shanghai 200050 Peoples R China;

    Chinese Acad Sci Shanghai Inst Ceram State Key Lab High Performance Ceram &

    Superfine 1295 Dingxi Rd Shanghai 200050 Peoples R China;

    SAIC Motor Corp Ltd 201 Anyan Rd Shanghai 201804 Peoples R China;

    SAIC Motor Corp Ltd 201 Anyan Rd Shanghai 201804 Peoples R China;

    Chinese Acad Sci Shanghai Inst Ceram State Key Lab High Performance Ceram &

    Superfine 1295 Dingxi Rd Shanghai 200050 Peoples R China;

    Chinese Acad Sci Shanghai Inst Ceram State Key Lab High Performance Ceram &

    Superfine 1295 Dingxi Rd Shanghai 200050 Peoples R China;

    Chinese Acad Sci Shanghai Inst Ceram State Key Lab High Performance Ceram &

    Superfine 1295 Dingxi Rd Shanghai 200050 Peoples R China;

    SAIC Motor Corp Ltd 201 Anyan Rd Shanghai 201804 Peoples R China;

    Chinese Acad Sci Shanghai Inst Ceram State Key Lab High Performance Ceram &

    Superfine 1295 Dingxi Rd Shanghai 200050 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号