首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Highly porous, low band-gap NixMn3-xO4 (0.55 <= x <= 1.2) spinel nanoparticles with in situ coated carbon as advanced cathode materials for zinc-ion batteries
【24h】

Highly porous, low band-gap NixMn3-xO4 (0.55 <= x <= 1.2) spinel nanoparticles with in situ coated carbon as advanced cathode materials for zinc-ion batteries

机译:高度多孔,低带间隙NixMN3-XO4(0.55 <= X = 1.2)尖晶石纳米粒子,其原位涂层碳作为锌离子电池的先进阴极材料

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Aqueous zinc ion batteries (ZIBs) are emerging as a highly promising alternative technology for grid-scale applications where high safety, environmental-friendliness, and high specific capacities are needed. It remains a significant challenge, however, to develop a cathode with a high rate capability and long-term cycling stability. Here, we demonstrate diffusion-controlled behavior in the intercalation of zinc ions into highly porous, Mn4+-rich, and low-band-gap NixMn3-xO4 nano-particles with a carbon matrix formed in situ (with the composite denoted as NixMn3-xO4@C, x = 1), which exhibits superior rate capability (139.7 and 98.5 mA h g(-1) at 50 and 1200 mA g(-1), respectively) and outstanding cycling stability (128.8 mA h g(-1) remaining at 400 mA g(-1) after 850 cycles). Based on the obtained experimental results and density functional theory (DFT) calculations, cation-site Ni substitution combined with a sufficient doping concentration can decrease the band gap and effectively improve the electronic conductivity in the crystal. Furthermore, the amorphous carbon shell and highly porous Mn4+-rich structure lead to fast electron transport and short Zn2+ diffusion paths in a mild aqueous electrolyte. This study provides an example of a technique to optimize cathode materials for high-performance rechargeable ZIBs and design advanced intercalation-type materials for other energy storage devices.
机译:锌离子电池(ZIBS)是一种高度有前途的替代技术,可用于高安全性,环境友好和高特定能力的网格级应用。然而,它仍然是一个重大挑战,以开发具有高速率能力和长期循环稳定性的阴极。在这里,我们证明了在锌离子中的插入到高度多孔,Mn4 + -RICH和低带 - 间隙NixmN3-XO4纳米颗粒中的扩散控制的行为,其用原位形成的碳基质(用复合材料表示为NixMn3-XO4 @c,x = 1),它分别显示出优异的速率能力(139.7和98.5 mA hg(-1),分别为50和1200 mA g(-1),仍然存在优异的循环稳定性(128.8 mA hg(-1)剩余850次循环后400 mA g(-1))。基于所获得的实验结果和密度函数理论(DFT)计算,阳离子位点替代与足够的掺杂浓度组合的替代能够降低带隙并有效地改善晶体中的电子电导率。此外,无定形碳壳和高度多孔Mn4 + - rich结构导致快速电子传输和短Zn2 +扩散路径在温和的水上电解质中。本研究提供了一种用于优化用于高性能可充电柱的阴极材料的技术的示例,并为其他能量存储装置设计高级插入型材料。

著录项

  • 来源
  • 作者单位

    Cent S Univ Coll Chem &

    Chem Engn Hunan Prov Key Lab Chem Power Sources Changsha 410083 Hunan Peoples R China;

    Univ Puerto Rico Rio Inst Funct Nanomat Dept Chem Rio Piedras Campus San Juan PR 00931 USA;

    Cent S Univ Coll Chem &

    Chem Engn Hunan Prov Key Lab Chem Power Sources Changsha 410083 Hunan Peoples R China;

    Univ Wollongong Inst Superconducting &

    Elect Mat Wollongong NSW 2522 Australia;

    Univ Wollongong Inst Superconducting &

    Elect Mat Wollongong NSW 2522 Australia;

    Univ Puerto Rico Rio Inst Funct Nanomat Dept Chem Rio Piedras Campus San Juan PR 00931 USA;

    Univ Wollongong Inst Superconducting &

    Elect Mat Wollongong NSW 2522 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号