首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Lithium-desorption mechanism in LiMn2O4, Li1.33Mn1.67O4, and Li1.6Mn1.6O4 according to precisely controlled acid treatment and density functional theory calculations
【24h】

Lithium-desorption mechanism in LiMn2O4, Li1.33Mn1.67O4, and Li1.6Mn1.6O4 according to precisely controlled acid treatment and density functional theory calculations

机译:根据精确控制的酸处理和密度泛函理论计算,LiMn2O4,Li1.33mN1.67O4和Li1.6mN1.6O4的锂解吸机理

获取原文
获取原文并翻译 | 示例
           

摘要

Spinel-type lithium manganese oxides (LMOs) are the most promising lithium-adsorption materials. LMOs can be in the form of solid solutions of LiMn2O4, Li1.33Mn1.67O4, and Li1.6Mn1.6O4. However, uncertainty about the lithium-desorption mechanism restricts material development. The synthesis of intermediate products of spinel-type LMOs during acid treatment is important to investigate such a mechanism. In this work, precisely controlled acid treatment experiments were performed to successfully obtain the intermediate products of LiMn2O4, Li1.33Mn1.67O4, and Li1.6Mn1.6O4. For LiMn2O4, lithium was desorbed with the dissolution of manganese. For Li1.33Mn1.67O4 and Li1.6Mn1.6O4, the lithium-desorption mechanism was an ion-exchange reaction, where lithium ions (Li+) in the 8a sites were prioritized for the ion-exchange reaction compared with Li+ in the 16d sites. Density functional theory (DFT) calculation results confirmed the experimental results and explained that the prioritization of Li+ in the 8a sites arose from its lower reaction-energy barrier, thereby revealing that Li+ preferred to move to the nearest vacant 8a sites when lithium was desorbed because of the lower diffusion-energy barrier. This work is the first to clarify the lithium-desorption mechanism through experiments and DFT calculations, and thus lays a foundation for the further exploitation of LMOs.
机译:尖晶石型锂锰氧化物(LMOS)是最有前途的锂吸附材料。 LMOS可以是LIMN2O4,LI1.33MN1.67O4和LI1.6MN1.6O4的固溶体的形式。然而,对锂解吸机制的不确定性限制了物质发展。在酸处理过程中,尖晶石型LMOS中间产物的合成对于研究这种机制是重要的。在这项工作中,进行精确控制的酸处理实验以成功地获得LiMn2O4,Li1.33mn1.67O4和Li1.6mN1.6O4的中间产物。对于LiMn2O4,锂解吸了锰的溶解。对于LI1.33MN1.67O4和LI1.6MN1.6O4,锂 - 解吸机理是离子交换反应,其中8A位点中的锂离子(Li +)优先于离子交换反应与Li +在16D位点相比。密度函数理论(DFT)计算结果证实了实验结果,并解释说,Li +在8A位点中的优先级从其较低的反应 - 能量屏障产生,从而揭示Li +当锂解吸时移动到最近的空置8a位点,因为较低的扩散能量屏障。这项工作是第一个通过实验和DFT计算阐明锂解吸机制,因此为进一步开发LMOS奠定了基础。

著录项

  • 来源
  • 作者单位

    Chinese Acad Sci Inst Proc Engn Natl Engn Lab Hydromet Cleaner Prod Technol CAS Key Lab Green Proc &

    Engn Beijing 100190 Peoples R China;

    Chinese Acad Sci Inst Proc Engn Natl Engn Lab Hydromet Cleaner Prod Technol CAS Key Lab Green Proc &

    Engn Beijing 100190 Peoples R China;

    Chinese Acad Sci Inst Proc Engn Natl Engn Lab Hydromet Cleaner Prod Technol CAS Key Lab Green Proc &

    Engn Beijing 100190 Peoples R China;

    Chinese Acad Sci Inst Proc Engn Natl Engn Lab Hydromet Cleaner Prod Technol CAS Key Lab Green Proc &

    Engn Beijing 100190 Peoples R China;

    Chinese Acad Sci Inst Proc Engn Natl Engn Lab Hydromet Cleaner Prod Technol CAS Key Lab Green Proc &

    Engn Beijing 100190 Peoples R China;

    Chinese Acad Sci Inst Proc Engn Natl Engn Lab Hydromet Cleaner Prod Technol CAS Key Lab Green Proc &

    Engn Beijing 100190 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号