首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Utilization of biomass pectin polymer to build high efficiency electrode architectures with sturdy construction and fast charge transfer structure to boost sodium storage performance for NASICON-type cathode
【24h】

Utilization of biomass pectin polymer to build high efficiency electrode architectures with sturdy construction and fast charge transfer structure to boost sodium storage performance for NASICON-type cathode

机译:生物质果胶聚合物的利用用坚固的结构和快速电荷转移结构构建高效率电极架构,以提高Nasicon型阴极的钠储存性能

获取原文
获取原文并翻译 | 示例
           

摘要

Despite recent advances in the development of suitable electrode materials for sodium-ion batteries, it remains a daunting challenge to achieve better Na+ storage performance without introducing new drawbacks. To improve the cycle stability and rate performance of Na3V2(PO4)(3), most attention has been directed to improving the electronic conductivity by carbon compositing. However, excess carbon increases the difficulty of adhering the active materials. Besides, the ionic insulation of PVDF hinders the transfer of Na+, which severely limits the rate capability. Herein, we proposed a strategy of using biomass pectin polymer to build an electrode architecture with a sturdy construction and fast charge transfer structure. The rich carboxylic and hydroxyl groups endow pectin with a strong binding force that protects the integrity of the electrode and avoids exfoliation of the active materials. Thus, the sturdy construction enables Na3V2(PO4)(3)/C (NVP) to run for over 15000 cycles. In addition, the construction of the conductive framework accelerates the fast transfer of the ion/electron, thereby giving rise to its enhanced rate capability. Thus NVP with even low carbon content of 1.15% could demonstrate superior rate capability at 100C rate. The rational design strategy in this study provides a new perspective for the optimizing electrode structure rather than material modification.
机译:尽管最近在用于钠离子电池的合适电极材料的发展方面的进步,但在不引入新缺点的情况下仍然是实现更好的NA +储存性能的艰巨挑战。为了提高Na3v2(PO4)(3)的循环稳定性和速率性能,大多数人都旨在通过碳合成来提高电子电导率。然而,过量的碳增加了粘附活性材料的难度。此外,PVDF的离子绝缘阻碍了Na +的转移,严重限制了速率能力。在此,我们提出了一种使用生物质果胶聚合物的策略,以构建具有坚固的结构和快速电荷转移结构的电极架构。富含羧酸和羟基赋予果胶,其具有强的粘合力,可保护电极的完整性并避免活性材料的剥离。因此,坚固的结构使NA3V2(PO4)(3)/ C(NVP)能够运行超过15000个循环。另外,导电框架的结构加速了离子/电子的快速传递,从而产生其增强的速率能力。因此,甚至低碳含量为1.15%的NVP可以以100℃的速率展示优异的速率能力。本研究中的理性设计策略为优化电极结构而不是材料改性提供了一种新的视角。

著录项

  • 来源
  • 作者单位

    Jilin Univ Key Lab Phys &

    Technol Adv Batteries Minist Educ Coll Phys Changchun 130012 Jilin Peoples R China;

    Chinese Acad Sci State Key Lab Rare Earth Resource Utilizat Changchun Inst Appl Chem Changchun 130022 Jilin Peoples R China;

    Nanyang Technol Univ Sch Mat Sci &

    Engn 50 Nanyang Ave Singapore 639798 Singapore;

    ASTAR Inst Mat Res &

    Engn Singapore Singapore;

    Univ British Columbia Dept Mat Engn Vancouver BC Canada;

    Jilin Univ Key Lab Phys &

    Technol Adv Batteries Minist Educ Coll Phys Changchun 130012 Jilin Peoples R China;

    Jilin Univ Key Lab Phys &

    Technol Adv Batteries Minist Educ Coll Phys Changchun 130012 Jilin Peoples R China;

    Nanyang Technol Univ Sch Mat Sci &

    Engn 50 Nanyang Ave Singapore 639798 Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号