首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Bulk properties and transport mechanisms of a solid state antiperovskite Li-ion conductor Li3OCl: insights from first principles calculations
【24h】

Bulk properties and transport mechanisms of a solid state antiperovskite Li-ion conductor Li3OCl: insights from first principles calculations

机译:固态Antiperovskite Li-离子导体Li3ocl的块状性能和传输机制Li3ocl:第一个原理计算的见解

获取原文
获取原文并翻译 | 示例
       

摘要

The excellent Li+ conductivity (0.85 x 10(-3) S cm(-1) at room temperature) and wide electrochemical stability window (6 V) of the antiperovskite Li3OCl material make it a promising candidate electrolyte for rechargeable all-solid-state Li batteries. In this study, we systematically evaluate the electronic, mechanical, and thermodynamic properties of Li3OCl by first-principles density functional theory calculations. The defect chemistry and Li+ migration mechanisms are also discussed in the context since Li+ diffusion is strongly influenced by defects in the material. Our results show that Li3OCl is an indirect wide-band gap insulator in the equilibrium state with a band gap of similar to 6.26 eV. Phonon spectral data confirm that Li3OCl is dynamically stable at its ground state. It is also revealed that Li3OCl is mechanically brittle. The bulk modulus of Li3OCl is greater than that of Li10GeP2S12, while it is comparable to that of Li0.5La0.5TiO3 and Li7La3Zr2O12. From quasi-harmonic approximation, the linear thermal expansion coefficient and thermal conductivity of the material are found to be 3.12 x 10(-6) K-1 and 22.49 W m(-1) K-1 at room temperature, respectively. With four types of point defect pairs in Li3OCl being considered, it is revealed that the LiCl defect pair has the lowest formation energy compared to Li2O, O substituted Cl, and Li/Li-vacancy Frenkel defect pairs. The LiCl and Frenkel defect pairs are the most important point defects responsible for the fast Li diffusion. Overall, our study provides fundamental and comprehensive insights into the bulk properties and transport mechanisms of Li3OCl for its practical application as a solid-state electrolyte in all-solid-state Li batteries.
机译:优异的Li +电导率(室温下为0.85×10(-3)厘米(-1))和宽的电化学稳定性窗口(& 6 V)的抗哌伏茨基钛矿Li3ocl材料使其成为可充电全固态的有希望的候选电解质国家李电池。在这项研究中,我们通过第一原理函数理论计算系统地评估Li3oCl的电子,机械和热力学性质。在上下文中还讨论了缺陷化学和Li +迁移机制,因为Li +扩散受到材料中缺陷的强烈影响。我们的研究结果表明,Li3ocl是平衡状态的间接宽带隙绝缘体,带隙的带隙类似于6.26eV。声子谱数据确认Li3oCL在其地位上动态稳定。还揭示了Li3ocl机械脆弱。 Li3oCl的体积大于Li10Gep2S12的大模量,而Li0.5LA0.5TiO3和Li7La3zR2O12的载玻片模量大。从准谐波近似,分别在室温下发现材料的线性热膨胀系数和导热系数为3.12×10(-6)k-1和22.49wm(-1)k-1。在考虑Li3oCL中有四种类型的点缺陷对,揭示了Li2O,O取代的CL和Li / Li空位Frenkel缺陷对相比具有最低形成能量的最低形成能量。 LICL和Frenkel缺陷对是最重要的点缺陷,负责快速的LI扩散。总体而言,我们的研究为Li3oCl的批量性质和运输机制提供了基本和全面的见解,其实际应用是全固态Li电池中的固态电解质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号