...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Ternary non-fullerene polymer solar cells with a high crystallinity n-type organic semiconductor as the second acceptor
【24h】

Ternary non-fullerene polymer solar cells with a high crystallinity n-type organic semiconductor as the second acceptor

机译:三元非富勒烯聚合物太阳能电池,具有高结晶度N型有机半导体作为第二受体

获取原文
获取原文并翻译 | 示例

摘要

Ternary blend is an effective way to realize high photovoltaic performance of polymer solar cells (PSCs). A highly crystalline n-type organic semiconductor (n-OS) IDIC was introduced into a low crystalline blend of conjugated polymer donor J61 and n-OS acceptor BT-IC. Higher power conversion efficiencies (PCE) of 10.80% were achieved for the ternary PSCs based on J61:IDIC:BT-IC (0.9:0.2:0.8, w/w), with an improved short-circuit current density (J(sc)), fill factor (FF) and unreduced open-circuit voltage (V-oc). The addition of high crystallinity IDIC into the binary J61:BT-IC blend enhanced the coherence length of polymer donor J61 in the blend film, yielding higher hole mobility and achieving higher J(sc) and FF. Charge recombination mechanism analysis revealed that the ternary blend based on J61:IDIC:BT-IC exhibited less bimolecular recombination in comparison with the device based on J61:BT-IC. The energy transfer was unveiled from IDIC to BT-IC for the two acceptors based on photoluminescence (PL) and transient absorption measurements. The V-oc of the ternary PSCs with 20% lower-lying the lowest unoccupied molecular orbital (LUMO) IDIC in the acceptors remained the same as the devices based on the host binary blend. This finding may account for the reduced bimolecular recombination and the energy transfer in the ternary devices. This study provides an efficient strategy to obtain a high PCE for ternary PSCs by introducing a second small molecule acceptor with high crystallinity.
机译:三元混合物是实现高分子太阳能电池(PSC)的高光伏性能的有效方法。将高结晶N型有机半导体(N-OS)IDIC引入共轭聚合物供体J61和N-OS受体BT-IC的低结晶混合物中。基于J61:IDIC的三元PSC(0.9:0.2:0.8,w / w),实现了10.80%的更高功率转换效率(PCE)为10.80%,具有改善的短路电流密度(J(SC) ),填充因子(FF)和未发出的开路电压(V-OC)。向二元J61中的高结晶度仿制物中添加到二进制J61:BT-IC共混物增强了共混膜中聚合物供体J61的相干长度,得到更高的孔迁移率并实现更高的J(SC)和FF。电荷重组机理分析显示,基于J61的三元共混物:惯用:BT-IC与基于J61:BT-IC的器件相比,BT-IC表现出更少的双分子重组。基于光致发光(PL)和瞬态吸收测量,将能量转移从IDIC到BT-IC的仿制物。三元PSC的V-OC具有20%的低于最低未占用的分子(LUMO)IDIC在受护者中仍然与基于主体二进制混合物的器件相同。该发现可能考虑降低的双分子重组和三元设备中的能量转移。该研究提供了通过引入具有高结晶度的第二小分子受体来获得适用于三元PSC的高PCE的有效策略。

著录项

  • 来源
  • 作者单位

    Univ Chinese Acad Sci Sch Chem Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Beijing Natl Lab Mol Sci CAS Key Lab Organ Solids Inst Chem Beijing 100190 Peoples R China;

    Soochow Univ Jiangsu Key Lab Carbon Based Funct Mat &

    Devices Inst Funct Nano &

    Soft Mat FUNSOM Suzhou 215123 Peoples R China;

    Shanghai Jiao Tong Univ Dept Phys &

    Astron Shanghai 200240 Peoples R China;

    Nanjing Univ Natl Lab Solid State Microstruct Sch Phys Nanjing Jiangsu Peoples R China;

    Univ Chinese Acad Sci Sch Chem Sci Beijing 100049 Peoples R China;

    Univ Chinese Acad Sci Sch Chem Sci Beijing 100049 Peoples R China;

    Univ Massachusetts Dept Polymer Sci &

    Engn Amherst MA 01003 USA;

    Soochow Univ Jiangsu Key Lab Carbon Based Funct Mat &

    Devices Inst Funct Nano &

    Soft Mat FUNSOM Suzhou 215123 Peoples R China;

    Shanghai Jiao Tong Univ Dept Phys &

    Astron Shanghai 200240 Peoples R China;

    Nanjing Univ Natl Lab Solid State Microstruct Sch Phys Nanjing Jiangsu Peoples R China;

    Shanghai Jiao Tong Univ Dept Phys &

    Astron Shanghai 200240 Peoples R China;

    Univ Massachusetts Dept Polymer Sci &

    Engn Amherst MA 01003 USA;

    Univ Chinese Acad Sci Sch Chem Sci Beijing 100049 Peoples R China;

    Univ Chinese Acad Sci Sch Chem Sci Beijing 100049 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号