...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Ultrathin CoFe-layered double hydroxide nanosheets embedded in high conductance Cu3N nanowire arrays with a 3D core-shell architecture for ultrahigh capacitance supercapacitors
【24h】

Ultrathin CoFe-layered double hydroxide nanosheets embedded in high conductance Cu3N nanowire arrays with a 3D core-shell architecture for ultrahigh capacitance supercapacitors

机译:超薄CoFe层层双氢氧化物纳米片嵌入高电导Cu3N纳米线阵列中,具有用于超高电容超级电容器的3D芯壳架构

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Ultrathin layered double hydroxide (LDH) nanosheets are a promising candidate as the electrode material for energy storage due to the ultrafast mass diffusion and greater specific surface area. As a kind of emerging electrode material, metal nitride plays a vital role in improving the poor conductivity of most supercapacitors. Herein, we design a novel three-dimensional (3D) embedded hierarchical core-shell nanostructure by combining ultrathin CoFe-LDH nanosheets (approximate to 2.5 nm) with porous Cu3N nanowire arrays (NWAs), in which the ultrathin CoFe-LDH nanosheets are grown from the interior of Cu3N nanowire cores supported on Cu foam (denoted as Cu3N@CoFe-LDH). The prepared Cu3N@CoFe-LDH NWA electrode exhibits a high areal capacitance of 3078 mF cm(-2) at a current density of 1 mA cm(-2), excellent rate capacity (85.8% capacity retention at 20 mA cm(-2)) and superior cycling stability (93.9% retention after 10000 cycles), making it significantly superior to the related CuO@CoFe-LDH NWA electrodes. Additionally, the constructed asymmetric supercapacitor (ASC) devices deliver an ultrahigh energy density of 2.474 mWh cm(-3) and a robust cycling stability (92.6% retention after 10000 cycles). The outstanding electrochemical performance can be credited to the significant enhancement of the specific surface area, charge transport, and mechanical stability by the ultrathin LDH shell, the highly conductive Cu3N core, and the distinctive embedded core-shell nanostructure.
机译:超薄层状双氢氧化物(LDH)纳米片是由于超快质量扩散和较大的比表面积导致的储能电极材料。作为一种新出现的电极材料,金属氮化物在提高大多数超级电容器的差的导电性方面起着至关重要的作用。在此,我们通过将超薄的CoFe-LDH纳米片(近似为2.5nm)与多孔Cu3N纳米线阵列(NWAs)组合,设计了一种新的三维(3D)嵌入的分层核心 - 壳纳米结构,其中增加了超薄CoFe-LDH纳米胸部来自Cu3N纳米线内部的内部,支持Cu泡沫(表示为Cu3N @ Cofe-LDH)。制备的Cu3N @ CoFe-LDH NWA电极在电流密度为1 mA cm(-2),优异的速率容量(85.8%的容量保持在20 mA cm(-2) ))和优异的循环稳定性(10000次循环后93.9%的保留),使其显着优于相关的Cuo @ CoFe-LDH NWA电极。另外,构造的不对称超级电容器(ASC)器件可提供2.474mwh cm(-3)的超高能量密度和稳健的循环稳定性(在10000次循环后92.6%的保留)。优异的电化学性能可以归因于超薄LDH壳,高导电Cu3N芯和独特的嵌入核心壳纳米结构的比表面积,电荷输送和机械稳定性的显着增强。

著录项

  • 来源
  • 作者单位

    Cent China Normal Univ Coll Phys Sci &

    Technol Inst Nanosci &

    Nanotechnol Wuhan 430079 Hubei Peoples R China;

    Cent China Normal Univ Coll Phys Sci &

    Technol Inst Nanosci &

    Nanotechnol Wuhan 430079 Hubei Peoples R China;

    Cent China Normal Univ Coll Phys Sci &

    Technol Inst Nanosci &

    Nanotechnol Wuhan 430079 Hubei Peoples R China;

    Cent China Normal Univ Coll Phys Sci &

    Technol Inst Nanosci &

    Nanotechnol Wuhan 430079 Hubei Peoples R China;

    Cent China Normal Univ Coll Phys Sci &

    Technol Inst Nanosci &

    Nanotechnol Wuhan 430079 Hubei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号