首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Phosphorus-doped porous hollow carbon nanorods for high-performance sodium-based dual-ion batteries
【24h】

Phosphorus-doped porous hollow carbon nanorods for high-performance sodium-based dual-ion batteries

机译:用于高性能钠基双离子电池的磷掺杂多孔中空碳纳米棒

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Sodium-based dual-ion batteries (NDIBs) have attracted extensive attention in recent years owing to both relatively high power density and high energy density. However, the lack of sufficient anode materials for sodium-ion insertion/extraction has greatly hindered the development of NDIBs. Herein, phosphorus-doped hollow amorphous carbon nanorods (P-HCNs) were synthesized by an in situ method as anodes for NDIBs. Phosphorus doping results in microstructure bulges in P-HCNs and enlarges the interlayer spacing, which facilitate a fast passage of sodium ions. In addition, this amorphous carbon only exhibits a sloping potential profile and lacks a low voltage platform. The most reversible capacity for sodium storage is from high sodium intercalation potential, thus effectively alleviating the dendrite formation. As a result, it enables the soft carbon to have a long cycling life and excellent rate capability. Phosphorus doping and amorphous carbon synergistically improve the chemical adsorption ability. The reversible specific capacity of P-HCNs can be up to 121 mA h g(-1) after 1500 cycles at the current density of 500 mA g(-1) with 90% capacity retention maintained. It also has a high energy density of 76 W h kg(-1) at a power density of 891 W kg(-1). The rapid ion transportation, high conductivity, and outstanding physical and chemical adsorption together contribute to premier cycling stability, rate performance, and coulombic efficiency. This current research work is significant for NDIBs.
机译:由于相对高的功率密度和高能量密度,近年来,基于钠的双离子电池(NDIB)引起了广泛的关注。然而,用于钠离子插入/萃取的足够阳极材料极大地阻碍了NDIBs的发育。在此,通过原位方法作为NDIBs的阳极合成磷掺杂的中空非晶碳纳米杆(P-HCNS)。磷掺杂导致P-HCNS中的微观结构凸起,并扩大层间间隔,其促进了钠离子的快速通道。此外,这种非晶碳仅表现出倾斜潜在的曲线并缺乏低压平台。最可逆的钠储存能力来自高钠嵌入潜力,从而有效地减轻树突式形成。结果,它使软碳能够具有长的循环寿命和优异的速率能力。磷掺杂和无定形碳协同提高了化学吸附能力。在500mA g(-1)的电流密度为500mAg(-1)的1500次循环中,P-HCNS的可逆比容量最高可达121mA H(-1),其容量保持90%。它在891W kg(-1)的功率密度,它也具有76WH kg(-1)的高能量密度。快速离子运输,高导电性和出色的物理和化学吸附在一起促进了循环循环稳定性,速率性能和库仑效率。目前的研究工作对于NDIBs来说很重要。

著录项

  • 来源
  • 作者单位

    South China Normal Univ Guangdong Prov Key Lab Quantum Engn &

    Quantum Mat Guangdong Engn Technol Res Ctr Efficient Green En Engn Res Ctr MTEES Minist Educ Sch Phys &

    Telecom Guangzhou 510006 Peoples R China;

    South China Normal Univ Guangdong Prov Key Lab Quantum Engn &

    Quantum Mat Guangdong Engn Technol Res Ctr Efficient Green En Engn Res Ctr MTEES Minist Educ Sch Phys &

    Telecom Guangzhou 510006 Peoples R China;

    South China Normal Univ Guangdong Prov Key Lab Quantum Engn &

    Quantum Mat Guangdong Engn Technol Res Ctr Efficient Green En Engn Res Ctr MTEES Minist Educ Sch Phys &

    Telecom Guangzhou 510006 Peoples R China;

    South China Normal Univ Guangdong Prov Key Lab Quantum Engn &

    Quantum Mat Guangdong Engn Technol Res Ctr Efficient Green En Engn Res Ctr MTEES Minist Educ Sch Phys &

    Telecom Guangzhou 510006 Peoples R China;

    South China Normal Univ Guangdong Prov Key Lab Quantum Engn &

    Quantum Mat Guangdong Engn Technol Res Ctr Efficient Green En Engn Res Ctr MTEES Minist Educ Sch Phys &

    Telecom Guangzhou 510006 Peoples R China;

    South China Normal Univ Guangdong Prov Key Lab Quantum Engn &

    Quantum Mat Guangdong Engn Technol Res Ctr Efficient Green En Engn Res Ctr MTEES Minist Educ Sch Phys &

    Telecom Guangzhou 510006 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号