...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Lattice-mismatch-induced growth of ultrathin Pt shells with high-index facets for boosting oxygen reduction catalysis
【24h】

Lattice-mismatch-induced growth of ultrathin Pt shells with high-index facets for boosting oxygen reduction catalysis

机译:晶格 - 错配诱导超折射率突出的超折射率突出促进氧还原催化的生长

获取原文
获取原文并翻译 | 示例
           

摘要

Owing to its high catalyzing nature, Pt holds great promise as an efficient catalyst for the oxygen reduction reaction (ORR). Although surface steps/kinks have been proven beneficial for the catalytic performance, constructing steps/kinks on Pt surfaces remains a big challenge due to the high surface energy. Herein, we demonstrate that the lattice mismatch can induce the growth of Pt shells with high-density steps on substrates. We exemplify it by depositing Pt shells on Pd-Cu alloy nanocubes, between which the lattice mismatch reaches 4.53%, and testing the resulting catalysts for the ORR. We show that Pt shells on Pd-Cu alloy nanocubes exhibit an extraordinary increase in both specific and mass activities of 32 and 16 times, respectively, as compared to the commercial Pt/C catalyst. Meanwhile, functional tests in proton exchange membrane fuel cells exhibit a 121.9 mW cm(-2)increase in power density for Pd-Cu@Pt compared to the commercial Pt/C catalyst. Our result indicates that lattice mismatch between Pt shells and Pd-Cu alloy cores plays a key role in forming surface steps, while Pt shells grown on Pd cores only cause the formation of Pd@Pt nanocubes without surface steps. This work suggests that lattice mismatch can serve as an efficient parameter for preparing ORR catalysts with excellent activity and durability.
机译:由于其高催化性质,PT作为氧还原反应(ORR)的有效催化剂具有很大的希望。尽管已经证明表面步骤/扭结对于催化性能有益,但由于高表面能,PT表面的构建步骤/扭结仍然是一个很大的挑战。在此,我们证明了晶格错配可以诱导具有高密度步骤的PT壳的生长。我们通过沉积在Pd-Cu合金纳米孔上的Pt壳,晶格错配率达到4.53%,并测试所得催化剂的ORR。我们表明,与商业Pt / C催化剂相比,PD-Cu合金纳米孔上的PT壳分别表现出32和16次的特异性和质量活性的非凡增加。同时,与商业Pt / C催化剂相比,质子交换膜燃料电池中的功能性试验表现出121.9mW cm(-2)PD-Cu @ Pt的功率密度增加。我们的结果表明,PT壳和PD-Cu合金核之间的晶格错配在形成表面步骤中起关键作用,而在PD芯上生长的Pt壳仅导致没有表面步骤的Pd @ Pt纳米孔的形成。这项工作表明,格式错配可作为制备具有优异活性和耐久性的ORR催化剂的有效参数。

著录项

  • 来源
  • 作者单位

    Xian Technol Univ Sch Mat &

    Chem Engn Xian 710021 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Frontier Inst Sci &

    Technol State Key Lab Multiphase Flow Power Engn Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Frontier Inst Sci &

    Technol State Key Lab Multiphase Flow Power Engn Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Sch Sci State Key Lab Mech Behav Mat Key Lab Shanxi Adv Mat &

    Mesoscop Phys Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Frontier Inst Sci &

    Technol State Key Lab Multiphase Flow Power Engn Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Frontier Inst Sci &

    Technol State Key Lab Multiphase Flow Power Engn Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Frontier Inst Sci &

    Technol State Key Lab Multiphase Flow Power Engn Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Frontier Inst Sci &

    Technol State Key Lab Multiphase Flow Power Engn Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Frontier Inst Sci &

    Technol State Key Lab Multiphase Flow Power Engn Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Sch Sci State Key Lab Mech Behav Mat Key Lab Shanxi Adv Mat &

    Mesoscop Phys Xian 710049 Shaanxi Peoples R China;

    Shanghai Jiao Tong Univ Sch Mat Sci &

    Engn State Key Lab Met Matrix Composites Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Mat Sci &

    Engn State Key Lab Met Matrix Composites Shanghai 200240 Peoples R China;

    Xi An Jiao Tong Univ Frontier Inst Sci &

    Technol State Key Lab Multiphase Flow Power Engn Xian 710049 Shaanxi Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号