...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Exceeding the volcano relationship in oxygen reduction/evolution reactions using single-atom-based catalysts with dual-active-sites
【24h】

Exceeding the volcano relationship in oxygen reduction/evolution reactions using single-atom-based catalysts with dual-active-sites

机译:使用具有双活性位点的单原子催化剂超过氧还原/进化反应中的火山关系

获取原文
获取原文并翻译 | 示例
           

摘要

Finding cost-effective catalysts to drive oxygen reduction/evolution reactions (ORR/OER) is a highly attractive goal. Most catalysts follow a volcano relationship of performance, making it difficult to search thoroughly enough among the huge number of possible structures to reach the volcano apex. Using first-principles simulations, we demonstrated that the design of single-atom-based catalysts (SACs) incorporating dual-active-sites breaks the universal scaling relationship between *OOH and *OH adsorption, leading to performances superior to those constrained to follow the volcano plot. Both a linear OER activity trend that reaches an ideal 0 V overpotential and a new linear scaling relation (free energy difference Delta G(OOH) = Delta G(OH) + 2.41 eV) that crosses the region of optimal limiting potentials in the volcano plot of the ORR are associated with our dual-active-site designs. This novel strategy of breaking the volcano dependence with dual-active-sites in SACs may promote the development of efficient electrocatalysts for the ORR/OER and other chemical reactions.
机译:寻找经济高效的催化剂以驱动氧气还原/进化反应(ORR / OER)是一种高度吸引力的目标。大多数催化剂遵循火山的性能关系,使得难以在大量可能的结构中彻底搜索到达火山顶点。使用第一原理模拟,我们证明了一种掺入双源点的基于原子基催化剂(SAC)的设计破坏了* OOH和* OH吸附之间的通用缩放关系,导致性能优于受限制的那些火山图。达到理想0 V过电位的线性OER活动趋势和新的线性缩放关系(自由能量差Delta G(OOH)= Delta G(OH)+ 2.41eV),其穿过Volcano图中的最佳限制电位区域ORR与我们的双极式网站设计相关联。这种破坏囊中双活性部位的火山依赖性的新策略可以促进用于ORR / OER和其他化学反应的有效电催化剂的发展。

著录项

  • 来源
  • 作者单位

    Univ Sci &

    Technol China Collaborat Innovat Ctr Chem Energy Mat Hefei Natl Lab Phys Sci Microscale Sch Chem &

    Mat Sci Hefei 230026 Anhui Peoples R China;

    Fudan Univ Shanghai Key Lab Mol Catalysis &

    Innovat Mat Collaborat Innovat Ctr Chem Energy Mat MOE Key Lab Computat Phys Sci Dept Chem Shanghai 200433 Peoples R China;

    Univ Calif Irvine Dept Neurol Irvine CA 92697 USA;

    Univ Sci &

    Technol China Collaborat Innovat Ctr Chem Energy Mat Hefei Natl Lab Phys Sci Microscale Sch Chem &

    Mat Sci Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Collaborat Innovat Ctr Chem Energy Mat Hefei Natl Lab Phys Sci Microscale Sch Chem &

    Mat Sci Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Collaborat Innovat Ctr Chem Energy Mat Hefei Natl Lab Phys Sci Microscale Sch Chem &

    Mat Sci Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Collaborat Innovat Ctr Chem Energy Mat Hefei Natl Lab Phys Sci Microscale Sch Chem &

    Mat Sci Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Collaborat Innovat Ctr Chem Energy Mat Hefei Natl Lab Phys Sci Microscale Sch Chem &

    Mat Sci Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Collaborat Innovat Ctr Chem Energy Mat Hefei Natl Lab Phys Sci Microscale Sch Chem &

    Mat Sci Hefei 230026 Anhui Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号