首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >A thiadiazole-based covalent triazine framework nanosheet for highly selective and sensitive primary aromatic amine detection among various amines
【24h】

A thiadiazole-based covalent triazine framework nanosheet for highly selective and sensitive primary aromatic amine detection among various amines

机译:基于噻二唑的共价三嗪框架纳米片,用于各种胺之间的高度选择性和敏感的初级芳族胺检测

获取原文
获取原文并翻译 | 示例
           

摘要

Primary aromatic amines (PAAs), as a class of persistent and highly toxic organic pollutants, have been posing a great threat to human health and the environment. Therefore, the design and preparation of a highly sensitive and selective luminescent probe to detect PAAs among various amines are important but challenging. In this work, by introducing electron-deficient monomer 4,4 '-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzaldehyde (BTDD) with an aggregation-caused quenching behavior into the 2D framework, fluorescent ultrathin covalent triazine framework (F-CTF) nanosheets were constructed. Compared with the aggregated BTDD monomer, the obtained F-CTF-3 nanosheet shows much higher fluorescence quantum yield due to the BTDD fragment being well dispersed in the 2D framework. The F-CTF-3 nanosheet exhibits high stability, high porosity, and high fluorescence performance and has a rich electron-deficient unit in the pore channel, making it an ideal platform for sensing electron-rich PAA molecules. In fact, the F-CTF-3 nanosheet shows high sensitivity and selectivity for PAA detection by fluorescence quenching, among various amines, covering some classic aliphatic amines, heterocyclic amines, secondary aromatic amines and tertiary aromatic amines. To the best of our knowledge, it is the first reported fluorescent sensor for selective sensing of PAAs among various amines. Moreover, F-CTF-3 exhibits unprecedented low detection limits of 11.7 and 1.47 nM toward phenylamine (PA) andp-phenylenediamine (PDA), respectively, surpassing all the reported fluorescent sensors. The combination of experimental analysis and density functional theory (DFT) calculations demonstrates that the unique PAA detection performance of F-CTF-3 can be attributed to the static quenching process, which is confirmed by the formation of a ground-state fluorescence-quenched complex on account of the hydrogen bonding interactions between F-CTF-3 and PAAs. This work not only provides a thiadiazole-based 2D fluorescent organic framework nanosheet, but also an excellent fluorescent sensor with unexpected sensitivity and selectivity for PAA detection.
机译:作为一类持续和高毒性有机污染物的主要芳香胺(PAAS)对人类健康和环境构成了很大的威胁。因此,在各种胺中检测PaaS的高敏感和选择性发光探针的设计和制备是重要的,但挑战性。在这项工作中,通过引入电子缺陷的单体4,4' - (苯并[C] [1,2,5]噻二唑-4,7-二基)二苯甲醛(BTDD),使得引起的淬火行为进入2D框架,构建荧光超薄共价三嗪框架(F-CTF)纳米片。与聚集的BTDD单体相比,所获得的F-CTF-3纳米晶片表现出由于BTDD片段在2D框架中良好分散的BTDD片段而显示得更高的荧光量子产率。 F-CTF-3纳米晶片表现出高稳定性,高孔隙率和高荧光性能,并在孔通道中具有丰富的电子缺陷单元,使其成为感测电子富含电子的PAA分子的理想平台。实际上,F-CTF-3纳秒通过荧光猝灭,在各种胺中,覆盖一些经典脂族胺,杂环胺,二次芳族胺和叔芳族胺,对PAA检测进行高灵敏度和选择性。据我们所知,它是第一个报告的荧光传感器,用于选择性地感测各种胺之间PaaS。此外,F-CTF-3分别表现出前所未有的低检测限为11.7和1.47nm朝向苯胺(PA)和P-苯二胺(PDA),超越所有报告的荧光传感器。实验分析和密度泛函理论(DFT)计算的组合表明F-CTF-3的独特PAA检测性能可归因于静态淬火过程,其通过形成地面荧光淬火复合物的形成确认由于F-CTF-3和PaaS之间的氢键相互作用。这项工作不仅提供基于噻二唑的2D荧光有机框架纳米片,而且还提供了一种优异的荧光传感器,具有意外敏感性和PAA检测的选择性。

著录项

  • 来源
  • 作者单位

    Tiangong Univ State Key Lab Separat Membranes &

    Membrane Proc Tianjin 300387 Peoples R China;

    Tiangong Univ State Key Lab Separat Membranes &

    Membrane Proc Tianjin 300387 Peoples R China;

    Tiangong Univ State Key Lab Separat Membranes &

    Membrane Proc Tianjin 300387 Peoples R China;

    Tiangong Univ State Key Lab Separat Membranes &

    Membrane Proc Tianjin 300387 Peoples R China;

    Tiangong Univ State Key Lab Separat Membranes &

    Membrane Proc Tianjin 300387 Peoples R China;

    Tiangong Univ State Key Lab Separat Membranes &

    Membrane Proc Tianjin 300387 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号