...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >A broadband aggregation-independent plasmonic absorber for highly efficient solar steam generation
【24h】

A broadband aggregation-independent plasmonic absorber for highly efficient solar steam generation

机译:用于高效太阳能蒸汽发电的宽带聚集 - 独立等离子体吸收器

获取原文
获取原文并翻译 | 示例

摘要

Achieving efficient solar steam generation under natural sunlight has huge potential for sewage purification and seawater desalination. Plasmonic resonance has been extensively exploited for enhancing and extending the range of optical absorption. Until now, most reported broadband plasmonic solar absorbers have been designed by compact aggregation or engineering plasmonic architectures. In this work, we develop a new plasmonic absorber using gold nanostructures with the shape of a trepang (nano-trepang). By rationally regulating anisotropy at the single nanoparticle level, the nano-trepang shows good optical absorption over the entire solar spectrum (92.9%) with no requirement of engineering nanoparticle aggregation or constructing plasmonic architectures. The nano-trepang was then loaded into a polymeric aerogel and the network showed an excellent solar-to-vapor energy conversion efficiency of 79.3%. Under 1 sun AM1.5 G irradiation, a stable solar evaporation rate of 2.7 kg m(-2) h(-1) can be achieved, with high performance anti-salt precipitation in practical seawater steam generation. This work shows a broadband plasmonic absorber with aggregation-independent performance for highly efficient solar stream generation and provides a new strategy for practical solar desalination.
机译:在自然阳光下实现高效的太阳能蒸汽发电具有污水净化和海水淡化的巨大潜力。等离子体共振已被广泛利用以增强和延长光学吸收范围。到目前为止,大多数报道的宽带等离子体太阳能吸收剂都是由紧凑的聚集或工程等离子体架构设计的。在这项工作中,我们使用带有特肝(纳米 - 沿着)的金纳米结构的金纳米结构开发新的等离子体吸收器。通过合理调节单个纳米粒子水平的各向异性,纳米沿着整个太阳光谱(92.9%)显示出良好的光学吸收(92.9%),不需要工程纳米粒子聚集或构建等离子体架构。然后将纳米串珠式装载到聚合物气凝胶中,并且网络显示出优异的太阳能蒸气能量转换效率为79.3%。在1阳光下照射下,稳定的太阳蒸发速率为2.7千克(-2)H(-1),具有高性能抗盐沉淀在实用海水蒸汽发电中。这项工作显示了宽带等离子体吸收器,具有与高效的太阳能流的聚集无关的性能,为实际太阳脱盐提供了一种新的策略。

著录项

  • 来源
  • 作者单位

    City Univ Hong Kong Ctr Super Diamond &

    Adv Films COSDAF Dept Chem Hong Kong 999077 Peoples R China;

    City Univ Hong Kong Ctr Super Diamond &

    Adv Films COSDAF Dept Chem Hong Kong 999077 Peoples R China;

    City Univ Hong Kong Ctr Super Diamond &

    Adv Films COSDAF Dept Chem Hong Kong 999077 Peoples R China;

    City Univ Hong Kong Ctr Super Diamond &

    Adv Films COSDAF Dept Chem Hong Kong 999077 Peoples R China;

    City Univ Hong Kong Ctr Super Diamond &

    Adv Films COSDAF Dept Chem Hong Kong 999077 Peoples R China;

    City Univ Hong Kong Ctr Super Diamond &

    Adv Films COSDAF Dept Chem Hong Kong 999077 Peoples R China;

    City Univ Hong Kong Ctr Super Diamond &

    Adv Films COSDAF Dept Chem Hong Kong 999077 Peoples R China;

    City Univ Hong Kong Ctr Super Diamond &

    Adv Films COSDAF Dept Chem Hong Kong 999077 Peoples R China;

    City Univ Hong Kong Ctr Super Diamond &

    Adv Films COSDAF Dept Chem Hong Kong 999077 Peoples R China;

    City Univ Hong Kong Ctr Super Diamond &

    Adv Films COSDAF Dept Chem Hong Kong 999077 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号