...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Oxygen reduction and transport on the La_(1-x)Sr_xCo_(1-y)Fe_yO_(3-δ) cathode in solid oxide fuel cells: a first-principles study
【24h】

Oxygen reduction and transport on the La_(1-x)Sr_xCo_(1-y)Fe_yO_(3-δ) cathode in solid oxide fuel cells: a first-principles study

机译:在固体氧化物燃料电池中的La_(1-x)Sr_xco_(1-y)Fe_yo_(3-δ)阴极上的La_(1-x)Sr_xco_(1-y)的氧气减少和运输:一项研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Oxygen reduction and successive migration on a cathode are key steps in solid oxide fuel cells. In this work, we have systematically studied the adsorption, dissociation, incorporation, and successive diffusion of oxygen species on the La_(1-x)Sr_xCo_(1-y)Fe_yO_(3-δ) (LSCF) cathode on the basis of density-functional theory calculation. We found that the O2 molecule prefers to be adsorbed on the transition metal atoms at the B site (Fe or Co) than those at the A site (La or Sr). The oxygen molecule forms either superoxide (O2~(-)) or peroxide (O2~(2-)) species on the surface transition metal atoms, and the isomerisation energy barrier energies between them are less than 0.14 eV. The SrCo-terminated surface has the smallest oxygen vacancy formation energy, and the existence of surface oxygen vacancy promotes the oxygen dissociation on the B-site atom without an energy barrier. Instead, without the surface oxygen vacancy, the oxygen dissociation on the Co site needs to overcome an energy barrier of 0.30 eV, while that on the Fe site is about 0.14 eV. The calculated minimum energy pathways indicate that the energy barrier of oxygen migration on the surface is much higher than that in the bulk which contains the oxygen vacancy. Moreover, increasing the concentration of Co will effectively facilitate the formation of oxygen vacancy, greatly enhancing the oxygen bulk transport. Our study presents a comprehensive understanding of the mechanism of oxygen reduction and migration on the LSCF cathode.
机译:阴极上的氧还原和连续迁移是固体氧化物燃料电池的关键步骤。在这项工作中,我们系统地研究了在LA_(1-x)SR_XCO_(1-Y)FE_YO_(3-Δ)(3-δ)(LSCF)阴极上的吸附,解离,掺入和连续扩散,基于密度 - 功能理论计算。我们发现O2分子更喜欢在B位点(Fe或Co)的过渡金属原子上的吸附,而不是在部位(La或Sr)的过渡金属原子上。氧分子在表面过渡金属原子上形成超氧化物(O 2〜( - ))或过氧化氢(O 2〜(2-))物种,它们之间的异构化能阻能能量小于0.14eV。 SrCo封端的表面具有最小的氧空位形成能量,并且表面氧空位的存在促进B-位点原子上的氧解离,而没有能量屏障。相反,没有表面氧气空位,CO位点上的氧解离需要克服0.30eV的能量屏障,而在Fe网站上的电量约为0.14eV。计算出的最小能量途径表明表面上氧气迁移的能量屏障远高于含有氧空位的体积中的能量屏障。此外,增加CO的浓度将有效地促进氧空位的形成,大大提高了氧气输送。我们的研究旨在全面了解LSCF阴极上的氧气减少机制和迁移。

著录项

  • 来源
  • 作者单位

    CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026 P. R China.;

    CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026 P. R China.;

    CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026 P. R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号