...
首页> 外文期刊>Journal of Molecular Liquids >Transport properties of fluids using new rough hard-sphere and molecular dynamics simulation
【24h】

Transport properties of fluids using new rough hard-sphere and molecular dynamics simulation

机译:利用新的粗糙硬球和分子动力学模拟运输流体的运输性能

获取原文
获取原文并翻译 | 示例
           

摘要

We have studied transport properties, as well as the self-diffusion, viscosity and thermal conductivity of fluids by using new semi-theoretical model based on the rough hard-sphere (RHS) theory. In the present study, the proposed RHS is employed to model the transport properties of CH4, CCl4, C6H6, CHCl3, H2O, R134a, 2-EHB, PE and PS for temperatures ranging from 110 to 530 K and at pressures up to 1000 MPa. Parameters appeared in the new RHS model are taken from previously developed perturbed hard-trimer chain (PHTC) equation of state. From 174 experimental data points examined, the average absolute relative deviation AARD of predicted viscosities for CH4, H2O and R134a was found to be 6.59%. In the case of self-diffusion, the new RHS-based model correlated and predicted 139 experimental data points with AARD equal to 4.06%. The proposed RHS-based model has also been extended to predicted 228 experimental data points of thermal conductivity for CH4, H2O and R134a with AARD equal to 4.54%. In addition, molecular dynamics (MD) calculations were performed with the GROMACS simulation package and to investigate the thermophysical properties of fluids. The MD approach enabled us to calculate the density, viscosity, self-diffusion and thermal conductivity of CH4 and C6H6. The computed value of these properties agreement with experimental values. Finally, MD is applied to calculate density of binary water-alcohol mixtures including water-methanol and water-ethanol. (C) 2018 Elsevier B.V. All rights reserved.
机译:通过使用基于粗糙的硬球(RHS)理论的新的半理论模型,我们研究了运输性能,以及流体的自扩散,粘度和导热率。在本研究中,采用所提出的RHS来模拟CH4,CCl4,C6H6,CHCl3,H 2 O,R134A,2-EHB,PE和PS的运输性能,用于从110-530K和高达1000MPa的压力下的温度。在新RHS模型中出现的参数是从先前开发的扰动的硬度三聚体链(PHTC)方程的状态。从检查的174个实验数据点,发现CH4,H 2 O和R134a的预测粘度的平均绝对相对偏差AARD为6.59%。在自扩散的情况下,新的RHS的模型相关和预测139个实验数据点,AARD等于4.06%。所提出的基于RHS的模型还延伸到预测CH4,H2O和R134a的导热率的预测228实验数据点,与AARD等于4.54%。此外,用Gromacs模拟包装进行分子动力学(MD)计算并研究流体的热物理性质。 MD方法使我们能够计算CH4和C6H6的密度,粘度,自扩散和导热率。这些属性协议的计算值与实验值。最后,应用MD以计算二元水 - 醇混合物的密度,包括水 - 甲醇和水 - 乙醇。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号