首页> 外文期刊>Journal of nanoscience and nanotechnology >mpg-C3N4/Ag2O Nanocomposites Photocatalysts with Enhanced Visible-Light Photocatalytic Performance
【24h】

mpg-C3N4/Ag2O Nanocomposites Photocatalysts with Enhanced Visible-Light Photocatalytic Performance

机译:MPG-C3N4 / Ag2O纳米复合材料具有增强的可见光光催化性能的光催化剂

获取原文
获取原文并翻译 | 示例
           

摘要

To study the photocatalytic activity under visible light irradiation, a series of mesoporous graphitic carbon nitride (mpg-C3N4)/Ag2O photocatalysts were synthesized. The as-prepared photocatalysts were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N-2 adsorption Brunauer-Emmett-Teller method (N-2-BET), Fourier transform infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectra (DRS), and photoluminescence spectra (PL) methods to determine their phase structure, purity, morphology, spectroscopic and photoluminescence emission performance, respectively. Photocatalytic degradation of methyl orange (MO) aqueous solution under visible-light irradiation indicated that the mpgC(3)N(4)/Ag2O-50 nanocomposite exhibited the best activity. The degradation rate of MO reached to 90.8% in 120 min onto the mpg-C3N4/Ag2O-50 nanocomposite, and as compared with the pure mpg-C3N4 and Ag2O samples, the photocatalytic activity of the mpg-C3N4/Ag2O-50 nanocomposite was greatly enhanced. The enhancement of photocatalytic activity was mainly ascribed to the enhanced visible-light absorption ability and the formation of p-n heterojunctions between counterparts of the nanocomposites, which promoted the generation and separation of charge carriers.
机译:为了研究可见光照射下的光催化活性,一系列孔石墨氮化碳(MPG-C3N4)的/氧化银的光催化剂合成的。所制备的光催化剂并利用X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),N-2吸附布鲁诺 - 埃梅特 - 特勒法(N-2-BET),傅里叶变换红外光谱(FT-IR),紫外可见漫反射光谱(DRS),和光致发光光谱(PL)的方法,以确定其相结构,纯度,形态,光谱和光致发光发射性能,分别。甲基橙(MO)的可见光照射下水溶液的光催化降解表明mpgC(3)N(4)/ Ag 2 O的-50的纳米复合材料表现出最佳酶活性。 MO的降解速率在120分钟达到90.8%到MPG-C3N4 / Ag 2 O的-50的纳米复合材料,并且与纯的MPG-C3N4和Ag 2 O的样品相比,MPG-C3N4 / Ag 2 O的-50的纳米复合材料的光催化活性为大大增强。光催化活性的增强,主要是归因于增强的可见光吸收能力和P-N异质结的纳米复合材料,促进了生成和电荷载体分离同行之间形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号