首页> 外文期刊>Journal of Hydrology >Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management. Part 2: Model coupling and application
【24h】

Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management. Part 2: Model coupling and application

机译:耦合分布式利益相关者建造的系统动态社会经济模式与Sahysmod进行可持续土壤盐度管理。 第2部分:模型耦合和应用

获取原文
获取原文并翻译 | 示例
           

摘要

Many simulation models focus on simulating a single physical process and do not constitute balanced representations of the physical, social and economic components of a system. The present study addresses this challenge by integrating a physical (P) model (SAHYSMOD) with a group (stakeholder) built system dynamics model (GBSDM) through a component modeling approach based on widely applied tools such as MS Excel, Python and Visual Basic for Applications (VBA). The coupled model (PGBSDM) was applied to test soil salinity management scenarios (proposed by stakeholders) for the Haveli region of the Rechna Doab Basin in Pakistan. Scenarios such as water banking, vertical drainage, canal lining, and irrigation water reallocation were simulated with the integrated model. Spatiotemporal maps and economic and environmental trade-off criteria were used to examine the effectiveness of the selected management scenarios. After 20 years of simulation, canal lining reduced soil salinity by 22% but caused an initial reduction of 18% in farm income, which requires an initial investment from the government. The government-sponsored Salinity Control and Reclamation Project (SCARP) is a short-term policy that resulted in a 37% increase in water availability with a 12% increase in farmer income. However, it showed detrimental effects on soil salinity in the long term, with a 21% increase in soil salinity due to secondary salinization. The new P-GBSDM was shown to be an effective platform for engaging stakeholders and simulating their proposed management policies while taking into account socioeconomic considerations. This was not possible using the physically based SAHYSMOD model alone. (C) 2017 Elsevier B.V. All rights reserved.
机译:许多仿真模型专注于模拟单一物理过程,并且不构成系统的物理,社会和经济组件的平衡表示。本研究通过基于基于广泛应用的工具(如MS Excel,Python和Visual Basic为诸如MS Excel,Python和Visual Basic的组件建模方法,通过集成了物理(P)模型(SahysMod)通过组件建模方法来解决这一挑战应用程序(VBA)。耦合模型(PGBSDM)被应用于测试巴基斯坦哈维尔博物馆的哈维利地区的土壤盐度管理场景(利益攸关方提出)。用综合模型模拟了水库,垂直排水,运河衬里和灌溉水重新分配等情景。使用时空地图和经济和环境折衷标准用于检查所选管理方案的有效性。经过20年的模拟,运河衬里减少了土壤盐度,缩短了22%,但农产品收入初步减少了18%,这需要政府的初步投资。政府赞助的盐度控制和填海工程(Scarp)是一项短期政策,生产水可用性增加37%,农民收入增加12%。然而,它对长期对土壤盐度的有害影响,由于二次盐渍化,土壤盐度增加了21%。新的P-GBSDM被证明是用于参与利益相关者并在考虑到社会经济考虑的同时模拟其提出的管理政策的有效平台。仅使用物理基于SahysMod模型无法单独使用这一点。 (c)2017年Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号