...
首页> 外文期刊>Journal of Hydrology >Towards robust quantification and reduction of uncertainty in hydrologic predictions: Integration of particle Markov chain Monte Carlo and factorial polynomial chaos expansion
【24h】

Towards robust quantification and reduction of uncertainty in hydrologic predictions: Integration of particle Markov chain Monte Carlo and factorial polynomial chaos expansion

机译:在水文预测中稳健的量化和降低不确定性:粒子马尔可夫链蒙特卡罗和因子多项式混沌扩展的集成

获取原文
获取原文并翻译 | 示例

摘要

The particle filtering techniques have been receiving increasing attention from the hydrologic community due to its ability to properly estimate model parameters and states of nonlinear and non-Gaussian systems. To facilitate a robust quantification of uncertainty in hydrologic predictions, it is necessary to explicitly examine the forward propagation and evolution of parameter uncertainties and their interactions that affect the predictive performance. This paper presents a unified probabilistic framework that merges the strengths of particle Markov chain Monte Carlo (PMCMC) and factorial polynomial chaos expansion (FPCE) algorithms to robustly quantify and reduce uncertainties in hydrologic predictions. A Gaussian anamorphosis technique is used to establish a seamless bridge between the data assimilation using the PMCMC and the uncertainty propagation using the FPCE through a straightforward transformation of posterior distributions of model parameters. The unified probabilistic framework is applied to the Xiangxi River watershed of the Three Gorges Reservoir (TGR) region in China to demonstrate its validity and applicability. Results reveal that the degree of spatial variability of soil moisture capacity is the most identifiable model parameter with the fastest convergence through the streamflow assimilation process. The potential interaction between the spatial variability in soil moisture conditions and the maximum soil moisture capacity has the most significant effect on the performance of streamflow predictions. In addition, parameter sensitivities and interactions vary in magnitude and direction over time due to temporal and spatial dynamics of hydrologic processes. (C) 2017 Elsevier B.V. All rights reserved.
机译:由于其能够适当地估计模型参数和非线性和非高斯系统状态,粒子过滤技术已经接受了来自水文学群体的升高。为了促进水文预测中不确定性的稳健定量,有必要明确地检查参数不确定性的前向传播和演化及其影响影响预测性能的相互作用。本文介绍了一个统一的概率框架,它融合了粒子马尔可夫链蒙特卡罗(PMCMC)和因子多项式混沌扩展(FPCE)算法的优势,以鲁棒地量化和降低水文预测中的不确定性。高斯角色角化技术用于使用PMCMC和使用FPCE通过模型参数的后部分布的直接变换来建立数据同化之间的无缝桥。统一的概率框架适用于中国三峡水库(TGR)地区的湘西河流域,以展示其有效性和适用性。结果表明,土壤湿度容量的空间变异程度是最识别的模型参数,通过流汇流同化过程充满了最快的融合。土壤湿度条件下空间变异性与最大土壤水分容量之间的潜在相互作用对流流预测性能的影响最大。另外,由于水文过程的时间和空间动态,参数敏感性和相互作用随时间的量大和方向而变化。 (c)2017年Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号