...
首页> 外文期刊>Journal of Hydrology >Optimizing the configuration of precipitation stations in a space-ground integrated sensor network based on spatial-temporal coverage maximization
【24h】

Optimizing the configuration of precipitation stations in a space-ground integrated sensor network based on spatial-temporal coverage maximization

机译:基于空间覆盖最大化优化空间综合传感器网络中降水站的配置

获取原文
获取原文并翻译 | 示例
           

摘要

The two major rainfall observation techniques, ground-based measurements and remote sensing, have distinct coverage characteristics. Large-scale spatial coverage and long-term temporal coverage cannot be achieved simultaneously by using only ground-based precipitation stations or space-borne sensors. Given the temporal discontinuity of satellite coverage and limited ground-based observation resources, we propose a method for siting precipitation stations in conjunction with satellite-based rainfall sensors to maximize the total spatial-temporal coverage of weighted demand in a continuous observation period. Considering the special principles of deploying precipitation stations and the requirement for continuous coverage in space and time, a time-continuous maximal covering location problem (TMCLP) model is introduced. The maximal spatial coverage range of a precipitation station is determined based on the minimum density required and the site-specific terrain conditions. The coverage of a satellite sensor is calculated for each time period when it passes overhead. The polygon intersection point set (PIPS) is refined to identify finite candidate sites. By narrowing the continuous search space to a finite dominating set and discretizing the continuous observation period to sequential sub-periods, the siting problem is solved using the TMCLP model and refined PIPS. According to specific monitoring purposes, different weighting schemes can be used to evaluate the coverage priority of each demand object. The Jinsha River Basin is selected as the study region to test the proposed method. Satellite-borne precipitation radar is used to evaluate the satellite coverage. The results show that the proposed method is effective for precipitation station configuration optimization, and the model solution achieves higher coverage than the real-world deployment. The applicability of the proposed method, site selection criteria, deployment strategies in different observation modes, and the impacts of different weighting schemes are also discussed. (C) 2017 Elsevier B.V. All rights reserved.
机译:两个主要的降雨观察技术,基于地面的测量和遥感,具有不同的覆盖特性。只有使用基于地面的沉淀站或空间传感器,不能同时实现大规模的空间覆盖和长期时间覆盖。鉴于卫星覆盖率和基于基于地面的观察资源有限的时间不连续性,我们提出了一种与卫星的降雨传感器结合沉淀站立的方法,以在连续观察期内最大化加权需求的总空间覆盖率。考虑到展开降水站的特殊原理以及在空间和时间内连续覆盖的要求,介绍了连续的最大覆盖位置问题(TMCLP)模型。沉淀站的最大空间覆盖范围是基于所需的最小密度和特定于场地的地形条件来确定的。卫星传感器的覆盖范围在通过开销时的每次时段都计算。优化多边形交叉点集(PIPS)以识别有限候选站点。通过将连续搜索空间缩放到有限的主导集中并将连续观察周期离散到顺序子周期,使用TMCLP模型和精制点解决选​​址问题。根据具体的监视目的,可以使用不同的加权方案来评估每个需求对象的覆盖优先级。锦沙河流域被选为研究所提出的方法。卫星沉淀的降水雷达用于评估卫星覆盖范围。结果表明,该方法对于降水站配置优化有效,模型解决方案比现实世界部署更高的覆盖率。还讨论了所提出的方法,站点选择标准,在不同观察模式中的部署策略以及不同加权方案的影响的适用性。 (c)2017年Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号