...
首页> 外文期刊>Journal of Hydrology >Uncertainty analysis for seawater intrusion in fractured coastal aquifers: Effects of fracture location, aperture, density and hydrodynamic parameters
【24h】

Uncertainty analysis for seawater intrusion in fractured coastal aquifers: Effects of fracture location, aperture, density and hydrodynamic parameters

机译:裂缝沿海含水层海水入侵的不确定性分析:裂缝位置,孔径,密度和流体动力学参数的影响

获取原文
获取原文并翻译 | 示例

摘要

In this study we use polynomial chaos expansion (PCE) to perform uncertainty analysis for seawater intrusion (SWI) in fractured coastal aquifers (FCAs) which is simulated using the coupled discrete fracture network (DFN) and variable-density flow (VDF) models. The DFN-VDF model requires detailed discontinuous analysis of the fractures. In real field applications, these characteristics are usually uncertain which may have a major effect on the predictive capability of the model. Thus, we perform global sensitivity analysis (GSA) to provide a preliminary assessment on how these uncertainties can affect the model outputs. As our conceptual model, we consider fractured configurations of the Henry Problem which is widely used to understand SWI processes. A finite element DFN-VDF model is developed in the framework of COMSOL Multiphysics (R). We examine the uncertainty of several SWI metrics and salinity distribution due to the incomplete knowledge of fracture characteristics. PCE is used as a surrogate model to reduce the computational burden. A new sparse PCE technique is used to allow for high polynomial orders at low computational cost. The Sobol' indices (SIs) are used as sensitivity measures to identify the key variables driving the model outputs uncertainties. The proposed GSA methodology based on PCE and SIs is useful for identifying the source of uncertainties on the model outputs with an affordable computational cost and an acceptable accuracy. It shows that fracture hydraulic conductivity is the first source of uncertainty on the salinity distribution. The imperfect knowledge of fracture location and density affects mainly the toe position and the total flux of saltwater entering the aquifer. Marginal effects based on the PCE are used to understand the effects of fracture characteristics on SWI. The findings provide a technical support for monitoring, controlling and preventing SWI in FCAs.
机译:在这项研究中,我们使用多项式混乱膨胀(PCE)来执行对于其中使用耦合离散裂缝网络(DFN)和变密度流(VDF)模式模拟裂缝沿海含水层(的FCA)海水入侵(SWI)的不确定性分析。在DFN-VDF模型要求骨折的详细分析间断。在实际的现场应用,这些特性通常是不确定的,可能对模型的预测能力产生重大影响。因此,我们进行全球敏感性分析(GSA)提供关于这些不确定因素如何影响模型输出的初步评估。由于我们的概念模型,我们认为亨利问题的断裂构造,广泛用于了解SWI过程。有限元DFN-VDF模型在COMSOL Multiphysics的(R)的框架内开发的。我们考察的几个SWI指标和盐度分布的不确定性,由于断裂特性的了解不全面。 PCE作为替代模型,以减少计算负担。一种新的稀疏PCE技术来允许在低计算成本高多项式订单。所述Sobol”指数(SIS)被用作灵敏度措施来识别关键变量驱动模型输出的不确定性。基于PCE和SI所提出的方法GSA是用于识别在模型输出的不确定性的源极和合理的计算成本和可接受的准确度是有用的。它表明,断裂水力传导率是对盐度分布的不确定性的第一源。断裂位置和密度的不完善知识主要影响趾位置和盐水进入含水层的总通量。基于所述PCE边际效应被用来理解对SWI断裂特性的效果。该发现提供了监测,控制和预防SWI中的FCA技术支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号