...
首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Identifying Ultra Low Frequency Waves in the Lunar Plasma Environment Using Trajectory Analysis and Resonance Conditions
【24h】

Identifying Ultra Low Frequency Waves in the Lunar Plasma Environment Using Trajectory Analysis and Resonance Conditions

机译:使用轨迹分析和共振条件识别月球等离子体环境中的超低频率波

获取原文
获取原文并翻译 | 示例

摘要

Recent studies show that localized crustal magnetic fields on the lunar surface can reflect a significant portion of the incoming solar wind protons. These reflected ions can drive a wide range of plasma waves. It is difficult to determine the intrinsic properties of low-frequency waves with single-spacecraft observations, which can be heavily Doppler shifted. We describe a technique to combine trajectory analysis of reflected protons with the Doppler shift and resonance conditions to identify ultralow-frequency waves at the Moon. On 31 January 2014 plasma waves were detected by one of the Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) probes as it approached the lunar wake; these waves were not detected by the second ARTEMIS probe located upstream in the undisturbed solar wind. The observed waves had a frequency below the local ion cyclotron frequency and had right-hand circular polarization in the reference frame of the Moon. By solving the Doppler shift and the cyclotron resonance equations, we determined the conditions for reflected ions to excite the observed waves. Simulated trajectories of reflected ions correspond to ARTEMIS ion observations and support the hypothesis that reflected ions are the primary driver of the waves. By combining trajectory analysis with the resonance conditions, we identify scenarios where ions that satisfy the resonance conditions are present in the right location to generate the observed waves. Using this method, we can uniquely identify the observed waves as upstream propagating right-hand polarized waves, subject to the assumption that they are generated by cyclotron resonance with ions.
机译:最近的研究表明,在月球表面局部地壳磁场可以反映入射的太阳风质子的显著部分。这些反射的离子可以驱动不同等离子体波。这是很难确定与单宇宙飞船观测低频波,其可以是严重多普勒频移的固​​有性质。我们描述了一种技术,反映质子的轨迹分析与多普勒频移和谐振条件,以确定超高频电波,在月球结合。在2014年1月31日等离子体波是由加速的一个检测,重新连接,湍流和月亮与太阳(ARTEMIS)相互作用的电动力学探测器,因为它接近月球尾迹;没有被位于上游的未受干扰的太阳风第二ARTEMIS探针检测这些波。所观察到的波具有本地离子回旋频率以下的频率,并在月球的参考帧具有右旋圆极化。通过求解的多普勒频移和回旋共振方程,我们确定了反射离子的条件,以激发所观察到的波。反射的离子的仿真轨迹对应于ARTEMIS离子观测和支持这一假设反射离子是波的主要推动力。由轨迹分析与谐振条件相结合,我们鉴定其中满足谐振条件离子存在于产生所观察到的波的正确位置的情况。使用这种方法,我们可以唯一地识别被观察者波作为上游传播右手极化波,但须使它们通过与离子回旋共振产生的假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号