首页> 外文期刊>Journal of Fluid Mechanics >Propagation, proppant transport and the evolution of transport properties of hydraulic fractures
【24h】

Propagation, proppant transport and the evolution of transport properties of hydraulic fractures

机译:繁殖,支撑性运输和液压骨折运输性能的演变

获取原文
获取原文并翻译 | 示例
           

摘要

Hydraulic fracturing is a widely used method for well stimulation to enhance hydrocarbon recovery. Permeability, or fluid conductivity, of the hydraulic fracture is a key parameter to determine the fluid production rate, and is principally conditioned by fracture geometry and the distribution of the encased proppant. A numerical model is developed to describe proppant transport within a propagating blade-shaped fracture towards defining the fracture conductivity and reservoir production after fracture closure. Fracture propagation is formulated based on the PKN-formalism coupled with advective transport of an equivalent slurry representing a proppant-laden fluid. Empirical constitutive relations are incorporated to define rheology of the slurry, proppant transport with bulk slurry flow, proppant gravitational settling, and finally the transition from Poiseuille (fracture) flow to Darcy (proppant pack) flow. At the maximum extent of the fluid-driven fracture, as driving pressure is released, a fracture closure model is employed to follow the evolution of fracture conductivity with the decreasing fluid pressure. This model is capable of accommodating the mechanical response of the proppant pack, fracture closure of potentially contacting rough surfaces, proppant embedment into fracture walls, and most importantly flexural displacement of the unsupported spans of the fracture. Results show that reduced fluid viscosity increases the length of the resulting fracture, while rapid leak-off decreases it, with both characteristics minimizing fracture width over converse conditions. Proppant density and size do not significantly influence fracture propagation. Proppant settling ensues throughout fracture advance, and is accelerated by a lower viscosity fluid or greater proppant density or size, resulting in accumulation of a proppant bed at the fracture base. 'Screen-out' of proppant at the fracture tip can occur where the fracture aperture is only several times the diameter of the individual proppant particles. After fracture closure, proppant packs comprising larger particles exhibit higher conductivity. More importantly, high-conductivity flow channels are necessarily formed around proppant banks due to the flexural displacement of the fracture walls, which offer preferential flow pathways and significantly influence the distribution of fluid transport. Higher compacting stresses are observed around the edge of proppant banks, resulting in greater depths of proppant embedment into the fracture walls and/or an increased potential for proppant crushing.
机译:液压压裂是一种广泛使用的方法,用于促进烃恢复。液压骨折的渗透率或流体导电性是确定流体生产速率的关键参数,主要由断裂几何形状和包装支撑剂的分布。开发了一种数值模型来描述传播叶片形状骨折内的支撑剂传输,朝向裂缝闭合后定义断裂电导率和储层生产。基于与代表Proppant-Laden流体的等效浆料的平均浆料相结合的PKN形式配制骨折繁殖。融合了经验构成关系,以定义浆料的流变学,用散装浆液流动,支撑剂重力沉降,以及最后从Poiseuille(骨折)流向达西(支撑剂包)流动的过渡。在流体驱动的裂缝的最大程度上,由于驱动压力释放,裂缝闭合模型用于随着液体压力降低的裂缝导电性的演变。该模型能够容纳支撑包装的机械响应,断裂闭合粗糙表面,支撑剂嵌入到骨折壁中,以及不支持的裂缝跨度的最重要的弯曲位移。结果表明,降低的流体粘度增加了所得裂缝的长度,同时快速泄漏减少,两种特性最小化逆转条件。支撑剂密度和大小不会显着影响裂缝繁殖。支撑剂沉降在整个骨折前进,并且通过较低的粘度流体或更高的支撑剂密度或尺寸加速,导致支撑剂床在裂缝基座上积聚。在断裂尖端处的支撑剂的“屏幕外”可以发生在裂缝孔的距离仅为各个支撑剂颗粒的直径的几倍时。在断裂闭合后,包含较大颗粒的支撑剂包具有更高的导电性。更重要的是,由于裂缝壁的弯曲位移,高导电流量通道必须围绕支撑剂堤形成,其提供优先流动途径并显着影响流体运输的分布。在支撑剂堤的边缘周围观察到更高的压实应力,从而使支撑剂嵌入到断裂壁上的深度和/或增加支撑剂压碎的电位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号