首页> 外文期刊>Journal of Fluid Mechanics >The Schur decomposition of the velocity gradient tensor for turbulent flows
【24h】

The Schur decomposition of the velocity gradient tensor for turbulent flows

机译:湍流流动速度梯度张量的舒尔分解

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The velocity gradient tensor for turbulent flow contains crucial information on the topology of turbulence, vortex stretching and the dissipation of energy. A Schur decomposition of the velocity gradient tensor (VGT) is introduced to supplement the standard decomposition into rotation and strain tensors. Thus, the normal parts of the tensor (represented by the eigenvalues) are separated explicitly from non-normality. Using a direct numerical simulation of homogeneous isotropic turbulence, it is shown that the norm of the non-normal part of the tensor is of a similar magnitude to the normal part. It is common to examine the second and third invariants of the characteristic equation of the tensor simultaneously (the $unicode[STIX]{x1D64C}{-}unicode[STIX]{x1D64D}$ diagram). With the Schur approach, the discriminant function separating real and complex eigenvalues of the VGT has an explicit form in terms of strain and enstrophy: where eigenvalues are all real, enstrophy arises from the non-normal term only. Re-deriving the evolution equations for enstrophy and total strain highlights the production of non-normality and interaction production (normal straining of non-normality). These cancel when considering the evolution of the VGT in terms of its eigenvalues but are important for the full dynamics. Their properties as a function of location in $unicode[STIX]{x1D64C}{-}unicode[STIX]{x1D64D}$ space are characterized. The Schur framework is then used to explain two properties of the VGT: the preference to form disc-like rather than rod-like flow structures, and the vorticity vector and strain alignments. In both cases, non-normality is critical for explaining behaviour in vortical regions.
机译:湍流的速度梯度张量包含湍流,涡流拉伸和能量的耗散的拓扑的关键信息。速度梯度张量(VGT)中的Schur分解被引入到标准的分解补充到旋转和应变张量。因此,张量的正常部分(由本征值表示)由非正常明确地分离。使用各向同性湍流的直接数值模拟中,示出的是张量的非正常部的范数是一个类似的大小与正常部分的。这是常见的同时检查张量的特征方程的第二和第三不变量(在$ 的unicode [STIX] {x1D64C} { - } 的unicode [STIX] {x1D64D} $图)。随着舒尔方法,判别函数分离VGT的真实和复杂的特征值在应变和拟涡方面的明确形式:其中特征值都是真实的,拟涡源于只有非正常足月。重新导出用于拟涡和总应变亮点生产非正态性和相互作用的生产(非正常的正常应变)的演化方程。这些取消考虑VGT的演变在它的特征值的条件时,但对于全动态的重要。 { - }它们作为位置的在$ 的unicode [STIX] {x1D64C}的函数特性的unicode [STIX] {x1D64D} $空间的特征。然后的Schur框架用于解释VGT的两个属性:偏好以形成圆盘状,而不是棒状冷却水的结构,和涡度矢量和应变的比。在这两种情况下,非正常是在旋涡区解释行为的关键。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号