...
首页> 外文期刊>Journal of Fluid Mechanics >Spectral evolution of weakly nonlinear random waves: kinetic description versus direct numerical simulations
【24h】

Spectral evolution of weakly nonlinear random waves: kinetic description versus direct numerical simulations

机译:弱非线性随机波的光谱演化:动力学描述与直接数值模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Kinetic equations are widely used in many branches of science to describe the evolution of random wave spectra. To examine the validity of these equations, we study numerically the long-term evolution of water wave spectra without wind input using three different models. The first model is the classical kinetic (Hasselmann) equation (KE). The second model is the generalised kinetic equation (gKE), derived employing the same statistical closure as the KE but without the assumption of quasistationarity. The third model, which we refer to as the DNS-ZE, is a direct numerical simulation algorithm based on the Zakharov integrodifferential equation, which plays the role of the primitive equation for a weakly nonlinear wave field. It does not employ any statistical assumptions. We perform a comparison of the spectral evolution of the same initial distributions without forcing, with/without a statistical closure and with/without the quasistationarity assumption. For the initial conditions, we choose two narrow-banded spectra with the same frequency distribution and different degrees of directionality. The short-term evolution (O(10(2)) wave periods) of both spectra has been previously thoroughly studied experimentally and numerically using a variety of approaches. Our DNS-ZE results are validated both with existing short-term DNS by other methods and with available laboratory observations of higher-order moment (kurtosis) evolution. All three models demonstrate very close evolution of integral characteristics of the spectra, approaching with time the theoretical asymptotes of the self-similar stage of evolution. Both kinetic equations give almost identical spectral evolution, unless the spectrum is initially too narrow in angle. However, there are major differences between the DNS-ZE and gKE/KE predictions. First, the rate of angular broadening of initially narrow angular distributions is much larger for the gKE and KE than for the DNS-ZE, although the angular width does ap
机译:动力学方程被广泛应用于许多科学分支来描述随机波谱的演变。为了检查这些等式的有效性,我们在数字上研究了水波光谱的长期演变,无需使用三种不同的模型。第一模型是经典动力学(Hasselmann)等式(KE)。第二模型是推广使用与KE相同的统计闭合但没有Quasistationarity的假设来衍生的推广动力学方程(GKE)。我们称为DNS-ZE的第三模型是基于Zakharov积分分配方程的直接数值模拟算法,其起着弱非线性波场的原始方程的作用。它不采用任何统计假设。我们执行相同初始分布的光谱演进的比较,而无需迫使/没有统计闭合和/没有Quasistationarity假设。对于初始条件,我们选择两个具有相同频率分布和不同方向性的窄带光谱。两种光谱的短期进化(O(10(10(2))波段)先前已经通过各种方法进行了实验和数值彻底地进行了彻底研究。我们的DNS-ZE结果与其他方法的现有短期DNS验证,以及具有高阶时刻(Kurtosis)演变的可用实验室观察。所有三种模型都表现出光谱的整体特征的非常近的演变,随着时间的自我相似阶段的理论渐近的时间接近。除非频谱最初直角窄太窄,否则两个动力学方程都提供了几乎相同的光谱演化。但是,DNS-ZE和GKE / KE预测之间存在重大差异。首先,对于GKE和KE而不是DNS-ZE,初始窄角分布的角度扩大速率远大得多,尽管角度宽度是AP

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号