首页> 外文期刊>Journal of Fluid Mechanics >Computationally generated constitutive models for particle phase rheology in gas-fluidized suspensions
【24h】

Computationally generated constitutive models for particle phase rheology in gas-fluidized suspensions

机译:气体流化悬浮液中粒子相流变学的计算上产生的本构模型

获取原文
获取原文并翻译 | 示例
           

摘要

Developing constitutive models for particle phase rheology in gas-fluidized suspensions through rigorous statistical mechanical methods is very difficult when complex inter-particle forces are present. In the present study, we pursue a computational approach based on results obtained through Eulerian–Lagrangian simulations of the fluidized state. Simulations were performed in a periodic domain for non-cohesive and mildly cohesive (Geldart Group A) particles. Based on the simulation results, we propose modified closures for pressure, bulk viscosity, shear viscosity and the rate of dissipation of pseudo-thermal energy. For non-cohesive particles, results in the high granular temperature $T$ regime agree well with constitutive expressions afforded by the kinetic theory of granular materials, demonstrating the validity of the methodology. The simulations reveal a low $T$ regime, where the inter-particle collision time is determined by gravitational fall between collisions. Inter-particle cohesion has little effect in the high $T$ regime, but changes the behaviour appreciably in the low $T$ regime. At a given $T$ , a cohesive particle system manifests a lower pressure at low particle volume fractions when compared to non-cohesive systems; at higher volume fractions, the cohesive assemblies attain higher coordination numbers than the non-cohesive systems, and experience greater pressures. Cohesive systems exhibit yield stress, which is weakened by particle agitation, as characterized by $T$ . All these effects are captured through simple modifications to the kinetic theory of granular materials for non-cohesive materials.
机译:当存在复杂的颗粒力时,通过严格的统计机械方法对气体流化悬浮液中的颗粒分流学的构成模型非常困难。在本研究中,我们基于通过流化状态的欧拉维拉格山模拟获得的结果来追求计算方法。在周期性结构域中进​​行模拟,用于非粘合和轻度粘合(Geldart Group A)颗粒。基于仿真结果,我们提出了改进的封闭件,用于压力,堆积粘度,剪切粘度和伪热能耗散速率。对于非粘性颗粒,导致高颗粒温度$ T $政权对粒状材料的动力学理论提供的本组表达式吻合,证明了方法的有效性。模拟显示了低价的$ T $政权,其中颗粒间冲突时间由碰撞之间的重力确定。颗粒间凝聚力在高度$ T $政权中效果几乎没有效果,但在低价$政权中会显着改变行为。在给定的$ T $,与非粘性系统相比,粘性粒子系统在低粒子体积分数下表现出较低的压力;在较高的体积分数下,粘性组件比非粘性系统达到更高的配位数,并且体验更大的压力。粘性系统表现出屈服应力,通过颗粒搅拌削弱,其特征在于$ T $。通过对非粘性材料的颗粒材料的动力学理论进行简单的修改来捕获所有这些效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号