首页> 外文期刊>Journal of Electronic Materials >Quantitative Correlation between Electrical Resistivity and Microhardness of Cu-Ni-Mo Alloys via a Short-Range Order Cluster Model
【24h】

Quantitative Correlation between Electrical Resistivity and Microhardness of Cu-Ni-Mo Alloys via a Short-Range Order Cluster Model

机译:通过短距簇簇模型的Cu-Ni-Mo合金电阻率和微硬度与微硬度的定量相关性

获取原文
获取原文并翻译 | 示例
       

摘要

Strength and electrical resistivity are coupled in metal alloys as both are based upon a similar microstructure mechanism, but the quantitative relationship between them is not known due to the complex microstructures involved. The present work analyzes the dependence of hardness and electrical resistivity on solute contents for ternary [Moy/(y+12)Ni12/(y+12)](x)Cu100-x alloys (at.%), where x=0.3-15.0 is the total solute content and y=0.5-6.0 the ratio between Mo and Ni. The alloys are designed following the cluster-plus-glue-atom model to reach three distinct structural states, i.e., cluster solution state (y=1), where Mo is dissolved via a chemical short-range order characterized by Mo-centered and Ni-nearest-neighbored [Mo-1-Ni-12] cluster, cluster solution state plus extra Ni solution (y1), and a cluster solution state plus extra Mo in precipitation (y1). The measured electrical resistivity and microhardness data are correlated with these three structural states to reveal the property dependencies on solute contents. The cluster solution enhances the strength, without causing much increase in the electrical resistivity, as the solutes are organized into cluster-type local atomic aggregates that decrease dislocation mobility more strongly than electron scattering. Analogous to residual resistivity (R), which indicates the change of resistivity with reference to pure Cu, residual microhardness H-R and residual lattice constant a(R) are also defined. For the ideal cluster solution state (y=1, Mo/Ni=1/12), the mentioned three parameters are correlated with the total solute content x by rho(R)=1.08.x (10(-8) Omega m), H-R=1.50.x (Kgfmm(-2)), and alpha(R)=-1.08.x (10(-4) nm). From these, rho(R)=0.72H(R)=-alpha(R). Such simple relationships indicate that resistivity and strength are dependent on the same cluster-type solution mechanism and can be a good reference for evaluating strength and resistivity performance of Cu alloys.
机译:强度和电阻率在金属合金中偶联,因为两者都基于类似的微观结构机制,但由于所涉及的复杂微结构,它们之间的定量关系是不知道的。本作者分析了硬度和电阻率对三元溶质含量的依赖性[MoY /(Y + 12)Ni12 /(y + 12)](x)Cu100-x合金(at。%),其中x = 0.3- 15.0是总溶质含量和y = 0.5-6.0的Mo和Ni之间的比率。该合金以簇 - 加胶 - 原子模型设计,以达到三个不同的结构状态,即簇溶液状态(Y = 1),其中Mo通过特征的化学短线顺序溶解,其特征在于Mo - 中心和Ni - 最邻近的[Mo-1-Ni-12]集群,集群解决方案状态加额外的Ni溶液(Y <1),以及沉淀(Y& 1)中的额外mo。测量的电阻率和显微硬度数据与这三种结构状态相关,以揭示溶质内容物的性能依赖性。簇溶液增强强度,而不会导致电阻率大大增加,因为将溶质组织成簇型局部原子聚集体,其比电子散射更强烈地减少位错迁移率。类似于残留电阻率(R),其指示参考纯Cu的电阻率的变化,还定义了残留的微硬度H-R和残留的晶格常数A(R)。对于理想的簇溶液状态(Y = 1,Mo / Ni = 1/12),所提到的三个参数与通过Rho(R)= 1.08.x的总溶质含量x相关(10(-8)ωM)。 ,HR = 1.50.x(kgfmm(-2))和alpha(r)= - 1.08.x(10(-4)nm)。从这些,rho(r)= 0.72h(r)= - alpha(r)。这种简单的关系表明电阻率和强度依赖于相同的簇型溶液机制,并且可以是评估Cu合金的强度和电阻性性能的良好参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号