...
首页> 外文期刊>Journal of Colloid and Interface Science >Porous micropillar structures for retaining low surface tension liquids
【24h】

Porous micropillar structures for retaining low surface tension liquids

机译:用于保持低表面张力液体的多孔微米结构

获取原文
获取原文并翻译 | 示例
           

摘要

The ability to manipulate fluid interfaces, e.g., to retain liquid behind or within porous structures, can be beneficial in multiple applications, including microfluidics, biochemical analysis, and the thermal management of electronic systems. While there are a variety of strategies for controlling the disposition of liquid water via capillarity, such as the use of chemically modified porous adhesive structures and capillary stop valves or surface geometric features, methods that work well for low surface tension liquids are far more difficult to implement. This study demonstrates the microfabrication of a silicon membrane that can retain exceptionally low surface tension fluorinated liquids against a significant pressure difference across the membrane via an array of porous micropillar structures. The membrane uses capillary forces along the triple phase contact line to maintain stable liquid menisci that yield positive working Laplace pressures. The micropillars have inner diameters and thicknesses of 1.5-3 mu m and similar to 1 mu m, respectively, sustaining Laplace pressures up to 39 kPa for water and 9 kPa for Fluorinert (TM) (FC-40). A theoretical model for predicting the change in pressure as the liquid advances along the porous micropillar structure is derived based on a free energy analysis of the liquid meniscus with capped spherical geometry. The theoretical prediction was found to overestimate the burst pressure compared with the experimental measurements. To elucidate this deviation, transient numerical simulations based on the Volume of Fluid (VOF) were performed to explore the liquid pressure and evolution of meniscus shape under different flow rates (i.e., Capillary numbers). The results from VOF simulations reveal strong dynamic effects where the anisotropic expansion of liquid along the outer micropillar edge leads to an irregular meniscus shape before the liquid spills along the micropillar edge. These findings suggest that the analytical predicti
机译:操纵液体界面的能力,例如,以保留液体在后面或多孔结构内,可以有利于多种应用,包括微流体,生物化学分析和电子系统的热管理。虽然通过毛细管性控制液态水的配置有各种策略,例如使用化学改性多孔粘合剂结构和毛细管止挡阀或表面几何特征,但对于低表面张力液体运用的方法是更难的实施。该研究表明,硅膜的微细加工,其可以通过多孔微储物结构阵列将具有异常低表面张力氟化液体的硅膜免受膜上的显着压力差。膜使用沿三相接触线的毛细管力保持稳定的液体肿瘤,得到正面工作的拉普拉斯压力。微米的内径和厚度为1.5-3μm,分别类似于1μm,可持续拉普拉斯压力高达39kPa的水和9kPa用于氟(TM)(Fc-40)。基于封端的球形几何形状的液体弯月面的自由能分析,推导出预测压力变化的理论模型。与实验测量相比,发现理论预测估计脉冲压力。为了阐明这个偏差,瞬态数值模拟基流体(VOF)的体积上进行探索弯月形状的下不同的流速(即,毛细管数)的液体压力和演化。 VOF模拟的结果揭示了强大的动态效果,其中沿外微米边缘的液体的各向异性膨胀导致液体溢出沿着微米边缘的液体溢出之前的不规则弯月面形状。这些研究结果表明分析预测

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号