首页> 外文期刊>Journal of Colloid and Interface Science >In-situ synthesis of novel Z-scheme SnS2/BiOBr photocatalysts with superior photocatalytic efficiency under visible light
【24h】

In-situ synthesis of novel Z-scheme SnS2/BiOBr photocatalysts with superior photocatalytic efficiency under visible light

机译:原位合成新型Z样品SNS2 / BIOBR光催化剂,可见光下的优异光催化效率

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this study, a novel SnS2/BiOBr heterojunction photocatalyst was synthesized via a facile in-situ growth strategy. The heterojunction interface was formed by loading BiOBr nanosheets on the surface of ultra thin hexagonal SnS2 nanoplates. UV/Vis diffuse reflectance spectroscopy (DRS) indicated that SnS2/ BiOBr composites possessed stronger visible-light absorption. The as-fabricated SnS2/BiOBr heterojunction nanoplates exhibited considerable improvement in terms of photocatalytic activity for the degradation of rhodamine B (RhB) under visible light irradiation as compared with BiOBr and SnS2. The enhanced photocatalytic activity was attributed to the closely contacted interface between BiOBr and SnS2, thereby resulting in faster transfer of the photoinduced electron-hole pairs through their interface, as shown by the results of photoluminescence spectroscopy (PL) and photocurrent measurements. Radical trapping experiments demonstrated that holes (h(+)) and superoxide anion radicals (.O-2(-)) were the main active species in the photocatalytic oxidation process. The mechanism of the excellent photocatalytic activity of SnS2/BiOBr heterojunction composite was also discussed. (C) 2016 Elsevier Inc. All rights reserved.
机译:在该研究中,通过体面的原位生长策略合成了一种新的SNS2 / BIOBR异质结光催化剂。通过在超薄六方SNS2纳米层的表面上加载BioBR纳米片来形成异质结界面。 UV / Vis漫反射光谱(DRS)表明SNS2 / BIOBR复合材料具有更强的可见光吸收。与BioBR和SNS2相比,AS制造的SNS2 / BIOBR异质结纳米间纳入载体在可见光照射下的光催化活性方面表现出显着改善。增强的光催化活性归因于BioBR和SNS2之间的紧密接触的界面,从而通过其界面导致光突出的电子 - 空穴对的转移更快,如光致发光光谱(PL)和光电流测量结果所示。自由基捕获实验证明了孔(H(+))和超氧化物阴离子基团(.o-2( - ))是光催化氧化过程中的主要活性物质。还讨论了SNS2 / BioBR异质结复合材料的优异光催化活性的机理。 (c)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号