...
首页> 外文期刊>Journal of Colloid and Interface Science >Construction of electron transport channels in type-I heterostructures of Bi2MoO6/BiVO4/g-C3N4 for improved charge carriers separation efficiency
【24h】

Construction of electron transport channels in type-I heterostructures of Bi2MoO6/BiVO4/g-C3N4 for improved charge carriers separation efficiency

机译:BI2MOO6 / BIVO4 / G-C3N4型型I异质结构的电子传输通道的构建,用于改善电荷载流子分离效率

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, flower-like Bi2MoO6 nanoparticles grown on FTO substrates were firstly fabricated using a seed-free hydrothermal method. The Bi2MoO6 nanoflowers exhibited, to the best of our knowledge, higher photoelectrochemical (PEC) performances than other previously reported morphologies. It is generally accepted that the formation of type-I heterostructures is unfavorable for PEC applications. Nevertheless, in this work, we have successfully constructed a novel type-I architecture with numerous electron transport channels. In this unique Bi2MoO6/BiVO4 structure, BiVO4 films were continuously distributed on both the surfaces and the interstices of Bi2MoO6 nanoflowers. Interconnected BiVO4 nanoparticles could intimately contact with FTO substrates and thus constitute the electron transport channels, which could promptly transfer electrons to FTO substrates. Simultaneously, a cocatalyst of g-C3N4 was modified on the surfaces of BiVO4 to capture the photogenerated holes. As a result, the PEC activities of Bi2MoO6/BiVO4 heterostructures were significantly improved due to the enhanced charge carriers separation efficiency. The special design of electron transport channel may provide a universal strategy to address the intrinsic drawbacks of type-I heterostructures. (C) 2020 Elsevier Inc. All rights reserved.
机译:在这项工作中,首先使用无菌水热法制造在FTO底物上生长的花样的Bi2moo6纳米颗粒。 BI2Moo6纳米割人员展示了我们所知,比其他先前报告的形态更高的光电化学(PEC)性能。通常接受,I型异质结构的形成对于PEC应用是不利的。尽管如此,在这项工作中,我们已成功构建了一种具有许多电子传输通道的新型I架构。在这种独特的Bi2Moo6 / Bivo4结构中,Bivo4薄膜连续分布在Bi2moo6纳米割草的表面上和间隙上。相互连接的BIVO4纳米颗粒可以与FTO基板密切相关,从而构成电子传输通道,其可以迅速将电子转移到FTO基板上。同时,在BIVO4的表面上修饰G-C3N4的助催化剂以捕获光生孔。结果,由于增强的电荷载体分离效率,Bi2Moo6 / Bivo4异质结构的PEC活性显着改善。电子传输通道的特殊设计可以提供普遍的策略来解决类型-I异质结构的内在缺点。 (c)2020 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号