首页> 外文期刊>Journal of Colloid and Interface Science >Boosting exciton dissociation and molecular oxygen activation by in-plane grafting nitrogen-doped carbon nanosheets to graphitic carbon nitride for enhanced photocatalytic performance
【24h】

Boosting exciton dissociation and molecular oxygen activation by in-plane grafting nitrogen-doped carbon nanosheets to graphitic carbon nitride for enhanced photocatalytic performance

机译:通过在平面接枝氮气掺杂碳纳米片中促进激子解离和分子氧活化以增强光催化性能的石墨氮化物

获取原文
获取原文并翻译 | 示例
       

摘要

The metal-free graphitic carbon nitride (g-C3N4) polymer is a promising photocatalyst for energy production and environmental protection. However, attempts to intrinsically improve its low activity in photooxidation are rarely effective for the poor molecular oxygen (O-2) activation. Here we report a synthesis of directionally nitrogen-doped in-plane metal-free heterostructure, through coplanar grafting nitrogen-doped carbon nanosheets (NDCN) to g-C3N4. The in-plane grafted NDCN not only promoted exciton dissociation and charge transfer but also enhanced activating O-2 to reactive oxygen species, including superoxide radicals (O-center dot(2)-) and H2O2. The optimal C3N4-NDCN coplanar heterojunction (C3N4-NDCN-3) photocatalytically degraded 96.3% of sulfamethoxazole (SMX) under visible light irradiation at a low light intensity of 14.5 mW cm(-2) in 4 h, whose SMX degradation rate was 37.7-fold higher than that of pure g-C3N4. Furthermore, C3N4-NDCN-3 exhibited 95.3% removal of SMX under sunlight irradiation (59.8 mW cm(-2)) in 1 h, higher than the 58.0% of pristine g-C3N4. First-principles calculations and material characterizations demonstrated that the coplanar NDCN served as electron sink and catalytic center for hot-electron involved O-2 activation. The improved charge carrier separation and O-2 activation promoted generation of photoexcited hole and superoxide for photocatalytic degradation of SMX. The design strategy in this work inspires a new approach for high-performance polymer photocatalysts in solar energy storage and environmental remediation. (C) 2019 Elsevier Inc. All rights reserved.
机译:无金属石墨碳氮化物(G-C3N4)聚合物是能源生产和环保的有前途的光催化剂。然而,在差的分子氧(O-2)活化中很少有效地提高光氧化低活性的尝试。在这里,我们通过共面嫁接氮掺杂的碳纳米片(Ndcn)向G-C3N4进行了定向氮掺杂的平面无金属异质结构的合成。在平面接枝的NDCN不仅促进了激子解离和电荷转移,而且还增强了活性氧物质的激活,包括超氧基自由基(O中心点(2) - )和H 2 O 2。在4小时内以14.5mm cm(-2)的低光强度,最佳C3N4-NDCN共脉冲(C3N4-NDCN-3)光催化降解的96.3%的磺胺甲恶唑(SMX),其SMX降解率为37.7 - 比纯G-C3N4高。此外,C3N4-NDCN-3在阳光照射下表现出95.3%的SMX(59.8mm(-2)),在1小时内,高于原始G-C3N4的58.0%。第一原理计算和材料表征证明,共面NDCN用作热电子的电子水槽和催化中心涉及O-2活化。改进的电荷载体分离和O-2活化促进了光透射孔和超氧化物的光催化降解SMX。这项工作中的设计策略激发了一种新的太阳能储存和环境修复的高性能聚合物光催化剂的新方法。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号