首页> 美国卫生研究院文献>Advanced Science >Tailoring TiO2 Nanotube‐Interlaced Graphite Carbon Nitride Nanosheets for Improving Visible‐Light‐Driven Photocatalytic Performance
【2h】

Tailoring TiO2 Nanotube‐Interlaced Graphite Carbon Nitride Nanosheets for Improving Visible‐Light‐Driven Photocatalytic Performance

机译:量身定制TiO2纳米管交错的石墨氮化碳纳米片以改善可见光驱动的光催化性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rapid recombination of photoinduced electron–hole pairs is one of the major defects in graphitic carbon nitride (g‐C3N4)‐based photocatalysts. To address this issue, perforated ultralong TiO2 nanotube‐interlaced g‐C3N4 nanosheets (PGCN/TNTs) are prepared via a template‐based process by treating g‐C3N4 and TiO2 nanotubes polymerized hybrids in alkali solution. Shortened migration distance of charge transfer is achieved from perforated PGCN/TNTs on account of cutting redundant g‐C3N4 nanosheets, leading to subdued electron–hole recombination. When PGCN/TNTs are employed as photocatalysts for H2 generation, their in‐plane holes and high hydrophilicity accelerate cross‐plane diffusion to dramatically promote the photocatalytic reaction in kinetics and supply plentiful catalytic active centers. By having these unique features, PGCN/TNTs exhibit superb visible‐light H2‐generation activity of 1364 µmol h−1 g−1 (λ > 400 nm) and a notable quantum yield of 6.32% at 420 nm, which are much higher than that of bulk g‐C3N4 photocatalysts. This study demonstrates an ingenious design to weaken the electron recombination in g‐C3N4 for significantly enhancing its photocatalytic capability.
机译:光诱导电子-空穴对的快速重组是基于石墨碳氮化物(g-C3N4)的光催化剂的主要缺陷之一。为了解决这个问题,通过基于模板的方法,通过在碱性溶液中处理聚合的杂化体g-C3N4和TiO2纳米管,制备了多孔超长TiO2纳米管交错的g-C3N4纳米片(PGCN / TNT)。由于切割了多余的g-C3N4纳米片,穿孔的PGCN / TNT缩短了电荷转移的迁移距离,导致电子-空穴复合减弱。当将PGCN / TNTs用作产生H2的光催化剂时,它们的面内空穴和高亲水性可加速跨面扩散,从而显着促进动力学中的光催化反应并提供大量的催化活性中心。通过具有这些独特的功能,PGCN / TNT表现出了卓越的可见光H2生成活性,为1364 µmol h -1 g -1 (λ> 400 nm)在420 nm处的量子产率为6.32%,远高于块状g-C3N4光催化剂的量子产率。这项研究表明了一种巧妙的设计可以减弱g-C3N4中的电子重组,从而显着增强其光催化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号