首页> 外文期刊>Journal of Colloid and Interface Science >In-situ synthesis of 3D ultra-small gold augmented graphene hybrid for highly sensitive electrochemical binding capability
【24h】

In-situ synthesis of 3D ultra-small gold augmented graphene hybrid for highly sensitive electrochemical binding capability

机译:用于高敏感电化学结合能力的3D超小金增强石墨烯杂种的原位合成

获取原文
获取原文并翻译 | 示例
           

摘要

The fascinating properties of graphene can be augmented with other nanomaterials to generate hybrids to design innovative applications. Contrary to the conventional methodologies, we showed a novel yet simple, in-situ, biological approach which allowed for the effective growth of gold nanostructures on graphene surfaces (3D Au NS@GO). The morphology of the obtained hybrid consisted of sheets of graphene, anchoring uniform dispersion of ultra-small gold nanostructures of about 2-8 nm diameter. Surface plasmon resonance at 380 nm confirmed the nano-regimen of the hybrid. Fourier transform infrared spectroscopy indicated the utilization of amine spacers to host gold ions leading to nucleation and growth. The exceptional positive surface potential of 55 mV suggest that the hybrid as an ideal support for electrocatalysis. Ultimately, the hybrid was found to be an efficient receptor material for electrochemical performance towards the binding of uric acid which is an important biomolecule of human metabolism. The designed material enabled the detection of uric acid concentrations as low as 30 nM. This synthesis strategy is highly suitable to design new hybrid materials with interesting morphology and outstanding properties for the identification of clinically relevant biomolecules. (C) 2019 Elsevier Inc. All rights reserved.
机译:石墨烯的迷人性质可以用其他纳米材料增强以产生杂种以设计创新应用。与传统方法相反,我们展示了一种新颖但简单的原位的生物学方法,其允许在石墨烯表面上有效生长金纳米结构(3D Au NS @ Go)。所得杂交体的形态由石墨烯片组成,锚固均匀分散的超小金纳米直径约为2-8nm。 380nm处的表面等离子体共振证实了杂种的纳米方案。傅里叶变换红外光谱表明,利用胺间隔物来宿主黄金离子,导致成核和生长。 55 mV的卓越阳性表面电位表明,杂交作为对电常分的理想支持。最终,发现杂交物是一种有效的受体材料,用于电化学性能朝向尿酸的结合,这是人代谢的重要生物分子。设计的材料使得检测低至30nm的尿酸浓度。这种合成策略非常适合设计具有有趣形态的新的混合材料和出色的性质,用于鉴定临床相关的生物分子。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号