...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Structural, magnetic and electronic properties of Cu-Fe nanoclusters by density functional theory calculations
【24h】

Structural, magnetic and electronic properties of Cu-Fe nanoclusters by density functional theory calculations

机译:密度泛函理论计算Cu-Fe纳米能器的结构,磁性和电子性质

获取原文
获取原文并翻译 | 示例
           

摘要

We present results from density functional theory calculations referring to the magnetic properties of 13, 55, 147 and 309 atoms Cu-Fe icosahedral nanoclusters. Aiming in finding the nanocluster with the optimum magnetic moment (mu(B)) we explored the various sizes considering several compositions and atomic conformations. It came out that configurations with agglomerated Fe atoms inside the Cu-Fe nanoclusters and pure Cu surface shell are energetically favoured as demonstrated e.g. for the Cu49Fe6 with 2.3 mu(B) compared to 2.1 mu(B) of the Fe bcc. The highest magnetic moment, 3.6 mu(B), was found in the Cu12Fe case with the Fe atom located at the surface cell, while 3.18 mu(B) was found for the Cu297Fe12 in a similar configuration having Fe atoms surrounded by Cu that occupy the surface shell's edges. The magnetic moment is mainly due to Fe's spin up - down electronic density of states difference close to the Fermi level (E-F). In particular, the Spin-up Fe d electronic density of states are fully occupied yielding wavefunctions with homogeneous change distribution while the Spin-down is almost unoccupied exhibiting dangling bonding states close to E-F. These results could be used for the design of environmental sustainable smart alloys with superior magnetic properties e.g. by depositing Fe or FeCu on Cu nanoclusters or including new elements that provide the possibility of keeping the Fe Spin up-down electronic occupation difference close to E-F. (C) 2016 Elsevier B.V. All rights reserved.
机译:我们提出的函数函数计算的结果指的是13,55,147和309原子Cu-Fe Icosahe向量纳米团簇的磁性。旨在找到具有最佳磁矩的纳米光刻(MU(B)),我们探讨了考虑多种组成和原子构象的各种尺寸。它出来的是,用Cu-Fe纳米蛋白和纯Cu表面壳内的附聚铁原子的构型优势优势,如图所示。对于2.3μm(b)的Cu49Fe6,与Fe BCC的2.1μm(b)相比。在Cu12Fe壳中发现了最高磁矩,3.6μ(b),其中Fe原子位于表面电池,而在类似的构型中,发现3.18μm(b)的Cu297Fe12,其具有占用的Cu包围的Fe原子表面壳的边缘。磁矩主要是由于Fe的旋转上下电子密度靠近Fermi水平(E-F)。特别地,状态的旋转Fe D电子密度具有完全占用的具有均匀变化分布的波力,而拆卸几乎没有占用,其倾斜靠近E-F。这些结果可用于具有优异磁性的环境可持续智能合金的设计。通过在Cu纳米单元上存放FE或FECU或包括提供将FE旋转上下电子职业差异靠近E-F的可能性的新元素。 (c)2016 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号