...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >High-energy aqueous Li-ion hybrid capacitor based on metal-organic-framework-mimicking insertion-type copper hexacyanoferrate and capacitive-type graphitic carbon electrodes
【24h】

High-energy aqueous Li-ion hybrid capacitor based on metal-organic-framework-mimicking insertion-type copper hexacyanoferrate and capacitive-type graphitic carbon electrodes

机译:基于金属 - 有机框架模拟插入型铜六氰基甲醛和电容式石墨碳电极的高能锂离子混合电容器

获取原文
获取原文并翻译 | 示例

摘要

A high-performance aqueous Li-ion hybrid capacitor (LHC) using sonochemically prepared copper hexacyanoferrate (Cu-HCF) and sodium alginate-derived graphitic carbon (GC) nanoparticles are capable of serving as positive and negative electrodes, respectively, is described in this report. The electrode materials were prepared in a cost-effective manner and characterized using X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FT-IR). High-resolution transmission electron microscopy (HRTEM) and surface area measurements revealed the formation of 30- to 60-nm Cu-HCF and 40- to 60-nm GC particles with specific surface areas of 48 and 802 m(2)g(-1), respectively. Electrochemical studies including cyclic voltammetry (CV), galvanostatic charge-discharge (CD) analysis and electrochemical impedance spectroscopy (EIS) using a three-electrode configuration confirmed the presence of intercalative capacitance in the Cu-HCF electrode and double-layer capacitance in the GC electrode. Furthermore, the constructed Cu-HCF GC aqueous LHC system operates over a wide voltage window (2.2 V) and delivers a high capacitance (63.64 F g(-1)) and high energy density (42.78 Wh kg(-1)) with a good rate capability. These key features make the LHC system an ideal candidate for next-generation electrochemical energy storage devices. (C) 2018 Elsevier B.V. All rights reserved.
机译:使用声化学制备的铜铁氰化法(Cu-HCF)高性能水性锂离子混合式电容器(LHC)和藻酸钠衍生石墨碳(GC)的纳米颗粒能够作为正极和负极,分别在此描述报告。在具有成本效益的方式制备和使用X射线衍射(XRD)和傅里叶变换红外光谱(FT-IR),其特征在于所述的电极材料。高分辨透射电子显微镜(HRTEM)和表面积测量显示的30-60纳米的Cu-HCF形成和40至60纳米的GC颗粒的48和802米(2)g的比表面积( - 1)表示。使用三电极结构的电化学研究,包括循环伏安法(CV),恒电流充放电(CD)分析和电化学阻抗谱(EIS)证实了在GC插层电容在所述Cu-HCF电极和双电层电容的存在电极。此外,构成的Cu-HCF GC LHC含水系统工作在很宽的电压窗(2.2 V)和一个提供了一个高电容(63.64 F G(-1))和高能量密度(瓦42.78公斤(-1))良好的倍率性能。这些关键特性使该系统LHC下一代电化学能量存储设备的理想选择。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号