...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Improvement of high-temperature fatigue performance in the nickel-based alloy by LSP-induced surface nanocrystallization
【24h】

Improvement of high-temperature fatigue performance in the nickel-based alloy by LSP-induced surface nanocrystallization

机译:LSP诱导的表面纳米晶体化镍基合金高温疲劳性能的提高

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

High-temperature fatigue performance of turbine blades (material: nickel-based alloy) is improved by a surface nanocrystallization technology. Surface nanocrystallization characterized by XRD, SEM and TEM, can be achieved by laser shock peening (LSP). Different microstructures are observed at the depths along the direction of propagation of the shock wave. A layer of isometric 30-500 nm nanocrystalline (1-mu m-thick) is formed homogeneously at the surface of materials after LSP. With a heat treatment at 600 degrees C, the surface nanocrystals remain, while most of the residual compressive stresses are relaxed. The nanohardness of the deformed plastic layer (surface) is improved by a single laser shock impact, and an increase in the number of impacts improves the nanohardness amplitude. This nanohardness exhibits good stability against temperature, because of dislocation strengthening after thermal effect. The results of combined high-and-low cycle fatigue tests at 530 degrees C reveal that fatigue life of the turbine blades increased significantly by LSP, which are primarily associated with the effects such as surface nanocrystallization, high-density dislocation and residual compressive stress after thermal relaxation. (c) 2018 Elsevier B.V. All rights reserved.
机译:通过表面纳米晶体化技术改善了涡轮叶片(材料:镍基合金)的高温疲劳性能。以XRD,SEM和TEM为特征的表面纳米晶体可以通过激光冲击喷丸(LSP)来实现。沿着冲击波的传播方向在深度观察到不同的微观结构。在LSP之后,在材料表面上均匀地在材料表面形成等轴30-500nm纳米晶(1-mu m厚)。在600摄氏度下热处理,表面纳米晶体仍然存在,而大多数残留压缩应力是松弛的。通过单一激光冲击冲击改善变形塑料层(表面)的纳米型,并且撞击次数的增加改善了纳米型振幅。由于热效应后脱位强化,该纳米纳壁性稳定性稳定性稳定性。在530摄氏度下组合的高低循环疲劳试验结果显示,LSP的涡轮机叶片的疲劳寿命显着增加,这主要与表面纳米晶体化,高密度位错和残余压缩应力等效果相关热松弛。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号