首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Polyaniline coated graphene hybridized SnO2 nanocomposite: Low temperature solution synthesis, structural property and room temperature ammonia gas sensing
【24h】

Polyaniline coated graphene hybridized SnO2 nanocomposite: Low temperature solution synthesis, structural property and room temperature ammonia gas sensing

机译:聚苯胺涂层石墨烯杂交的SnO2纳米复合材料:低温溶液合成,结构性和室温氨气传感

获取原文
获取原文并翻译 | 示例
           

摘要

An inorganic-organic hybrid of SnO2-reduced graphene oxide (rGO)-polyaniline (SGP) nanocomposite has been successfully synthesized from surfactant-free precursor by a low temperature solution process. The SGP nanocomposite is found to form from in situ synthesized SnO2-rGO (SG) and polyaniline (PANI), generated via polymerization of aniline monomer at 5-10 degrees C. The structural properties of SGP have been analyzed by X-ray diffraction, transmission electron and atomic force microscopes. The chemical interaction existed in the nanocomposite has been examined by X-ray photoelectron, Fourier transform infrared and Raman spectroscopies. Compare to pristine SnO2 and SG, the SGP sample shows an enhanced ammonia gas sensing at room temperature. At an optimum content of PANI, high sensitivity, fast response and good selectivity of the gas sensing are observed in the nanocomposite. This enhanced sensing performance can be attributed to well-defined p-n hetero junction formation in the hybridized polyaniline and rGO with nano SnO2 in SGP as confirmed from structural characterization of the sample. It is also seen that the presence of PANI layers in SGP, enhances the chemical stability as reflected from the observation of negligible decrease in the sensing performance of sample up to 30 days period. This facile process can create an avenue for development of various metal oxide semiconductor-graphene-polyaniline nanocomposites for improving room temperature stable ammonia gas sensor. (c) 2018 Elsevier B.V. All rights reserved.
机译:通过低温溶液方法成功地从表面活性剂的前体合成了SnO2-氧化石墨烯氧化物(RGO)氧化物(RGO)纳米聚合物的无机 - 有机杂种。发现SGP纳米复合材料以原位合成的SNO2-RGO(SG)和聚苯胺(PANI)形成,通过在5-10℃下通过苯胺单体的聚合产生。通过X射线衍射分析SGP的结构性质,透射电子和原子力显微镜。通过X射线光电子,傅里叶变换红外和拉曼光谱研究了纳米复合材料中存在的化学相互作用。与原始SnO2和SG进行比较,SGP样品在室温下显示出增强的氨气传感。在纳米复合材料中观察到在PANI的最佳含量,高灵敏度,快速响应和气体感测的良好选择性。这种增强的感测性能可以归因于杂交的聚苯胺和RGO中的定义的P-N杂连接形成,其中来自样品的结构表征的SGP中的纳米SnO2。还可以看出,在SGP中存在PANI层,增强了从观察到30天的样品的感测性能下降的观察结果中的渗透性稳定性。该容器过程可以为用于改善室温稳定的氨气传感器的各种金属氧化物半导体 - 石墨烯 - 聚苯胺纳米复合材料的开发途径。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号