...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Enhanced single-band red upconversion luminescence of alpha-NaErF4:Mn nanoparticles by a novel hollow-shell structure under multiple wavelength excitation
【24h】

Enhanced single-band red upconversion luminescence of alpha-NaErF4:Mn nanoparticles by a novel hollow-shell structure under multiple wavelength excitation

机译:通过多个波长激励下的新型中空壳结构增强了α-Naerf4:Mn纳米颗粒的单带红色上变化发光

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Upconversion nanoparticles (UCNPs) doped with lanthanide ions have potential applications in biomedical, solar cells and displays. However, the intensity of the upconversion luminescence (UCL) is limited by the surface effects of nanomaterials, lattice defects, etc. Here, a novel alpha-NaErF4 hollow nanocube is fabricated by using divalent manganese ions (Mn2+) to substitute trivalent erbium ions (Er3+) in the NaErF4 matrix. The hollow-shell structure can weaken the luminescence quenching and surface quenching effects, reduce the energy loss of higher energy levels in nanoparticles, and improve the light capture ability of nanoparticles. So the UCL of alpha-NaErF4 hollow nanocubes is greatly improved, which is 14, 790 and 1071 times higher than that of the beta-NaErF4 under 808, 980 and 1530 nm laser excitation, respectively, and the emission in the red region is enhanced respectively by 69, 2049 and 2902 times. In particular, the hollow nanocubes emit intense single-band red emission under the three different wavelengths, respectively. Moreover, the magnetization of alpha-NaErF4 hollow nanocubes is 2.16 emu g(-1) at room temperature, which is larger than that of gadolinium-based materials. Hollow-shell structure, excellent paramagnetism and single-band red upconversion emission excited by various wavelengths will create NaErF4:40Mn UCNPs a good application prospect in the biomedical field. (C) 2019 Elsevier B.V. All rights reserved.
机译:掺杂有稀土离子的上转换纳米粒子(UCNPs)具有在生物医学,太阳能电池和显示器的潜在应用。然而,上转换发光(UCL)的强度由纳米材料,晶格缺陷等。这里,一个新颖的α-NaErF4中空纳米立方体是通过使用二价锰离子(MN2 +)制造的表面效应的限制来替代三价铒离子( Er3 +离子)在NaErF4矩阵。中空 - 壳结构可以削弱发光猝灭和表面淬火效果,降低较高的能量水平的纳米粒子的能量损失,提高纳米颗粒的光捕获能力。这样的α-NaErF4中空纳米立方体的UCL大大提高,这是14,790和1071倍,根据808,980和1530纳米的激光激发的βNaErF4的更高,分别和在红色区域发射被增强分别由69,2049和2902倍。特别地,纳米立方体中空分别发射所述三种不同波长下激烈单波段红色发射。此外,α-NaErF4中空纳米立方体的磁化是2.16鸸鹋克(-1)在室温下,这是比基于钆的材料的大。空心 - 壳结构,优异的顺磁性和单波段的红色上转换发射由各种波长激发将创建NaErF4:40MN UCNPs在生物医学领域良好的应用前景。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号