首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Plasma-assisted coating of nanosized SnO2 on LiNi0.5Co0.2Mn0.3O2 cathodes for enhanced cyclic stability of lithium-ion batteries
【24h】

Plasma-assisted coating of nanosized SnO2 on LiNi0.5Co0.2Mn0.3O2 cathodes for enhanced cyclic stability of lithium-ion batteries

机译:LINI0.5CO0.2MN0.3O2在LINI0.5CO0.2MN0.3O2阴极上的纳米SNO2辅助涂层,用于提高锂离子电池的循环稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Layered Ni-rich cathode materials, LiNixCoyMnzO2, are regarded as the most promising cathode materials due to their high energy density. However, their poor cyclic stability at high voltage significantly limits their commercial application. To address this problem, a series of SnO(2-x)( )surface-modified LiNi0.5Co0.2Mn0.3O2 cathode materials is prepared by a one-step plasma-assisted milling strategy. The conductive SnO2 nanograins are homogeneously coated on the surface of LiNi0.5Co0.2Mn0.3O2 microsized particles under the interaction of plasma and mechanical energy. As a result, the electrode consisting of milled LiNi0.5Co0.2Mn0.3O2 coated with 3 wt % SnO2 exhibits a high initial Coulombic efficiency of 82.7% and a good capacity retention of 92.3% after 150 cycles. This is superior to the other milled control materials and a commercial LiNi0.5Co0.2Mn0.3O2 electrode with an initial Coulombic efficiency of 77.4% and a capacity retention of 87.1% after 150 cycles. It is demonstrated that the synergistic effect of high energy plasma and milling-induced oxygen vacancies in the SnO2-x surface protection layers of the LiNi0.5Co0.2Mn0.3O2 cathode enable greatly increased conductivity of the active materials and stable interfaces between the electrolyte and electrode. These factors are beneficial to provide a higher discharge capacity and enhanced cyclic stability in the 3 wt % SnO2 coated LiNi0.5Co0.2Mn0.3O2 cathode. (C) 2019 Elsevier B.V. All rights reserved.
机译:富含层的Ni阴极材料Linixcoymnzo2被认为是由于其高能量密度导致的最有前景的阴极材料。然而,它们在高压下的循环稳定性差显着限制了其商业应用。为了解决这个问题,通过一步等离子体辅助研磨策略制备了一系列SnO(2-X)()表面改性的LINI0.5CO0.2MN0.3O2正极材料。在等离子体和机械能的相互作用下,导电SnO2纳米均匀地涂覆在Lini0.5Co0.2Mn0.3O2微粒子的表面上。结果,由研磨的LiNi0.5Co0.2mN0.3O2组成的电极,其涂覆有3wt%SnO2,其高初始库仑效率为82.7%,良好的容量保留为150次循环后92.3%。这优于其他研磨的控制材料和商业LINI0.5CO0.2MN0.3O2电极,其初始库仑效率为77.4%,150次循环后的容量保持87.1%。结果证明,高能等离子体和研磨诱导的LINI0.5CO0.2MN0.3O2阴极中的高能等离子体和研磨诱导的氧空位的协同效应能够大大增加活性材料的导电性和电解质之间的稳定界面电极。这些因素有利于提供较高的放电容量和增强的3wt%SnO2涂覆的LiNi0.5Co0.2Mn0.3O2阴极中的环状稳定性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号