...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Facile design of ultrafine CuFe2O4 nanocrystallines coupled porous carbon nanowires: Highly effective electrocatalysts for hydrogen peroxide reduction and the oxygen evolution reaction
【24h】

Facile design of ultrafine CuFe2O4 nanocrystallines coupled porous carbon nanowires: Highly effective electrocatalysts for hydrogen peroxide reduction and the oxygen evolution reaction

机译:超细CuFe2O4纳米晶体耦合多孔碳纳米线的容易设计:对过氧化氢氢的高效电催化剂和氧气进化反应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Designing low-cost, high-efficiency and non-noble metal-based electrocatalysts is fairly essential for the commercial utilization of electrochemical sensors and energy conversion devices. Low-cost CuFe2O4 spinel has been widely researched as an electrocatalyst in electrochemical sensors and catalysis. Nevertheless, the low utilization of active sites in bulk CuFe2O4 and the poor electro conductivity of CuFe2O4 invariably restrict its upgrade in catalytic efficiency. Herein, by utilizing the facile electro-spinning technique and without involving any template or surfactant, we successfully design three-dimensional (3D) hierarchically porous architecture woven by abundant ultrafine CuFe2O4 crystal-coupled porous carbon nanowires (denoted as CuFe2O4/PCFs). Characterization results verify the 3D net-like textural structures of CuFe2O4/PCFs. Especially, the hierarchically porous structure, high surface area, and abundant carbon edges boost the uniform dispersion of tiny CuFe2O4 crystals; these obviously promote the amounts of electrochemically available CuFe2O4 active sites while decreasing the mass transport resistance of CuFe2O4/PCFs in electrocatalytic processes. Meanwhile, introducing carbon matrices can drastically enhance the electrical conductivity of CuFe2O4/PCF nanowires. All these advances in structural and physical performances truly make tremendous progress for CuFe2O4/PCFs for H2O2 reduction and oxygen evolution reaction (OER) catalysis compared with bulk CuFe2O4. For instance, the CuFe2O4/PCF catalyst exhibits a high sensitivity of 69.18 mu A mM(-1) cm(-2), low detection limit of 1.20 mu M and wide linear range of 0.11-22.0 mM for H2O2 sensing. Meanwhile, the CuFe2O4/PCF catalyst just needs a potential value of 1.589 V (vs. reversible hydrogen electrode) to achieve the OER catalysis current density of 10 mA cm(-2) in 1.0 M KOH, it only shows a small Tafel slope of 89.34 mV dec(-1) for the OER as well. Our catalyst design strategy of CuFe2O4/PCF nanowires not only demonstrates the successful design of a novel high-efficiency non-noble-metal catalyst for both OER and H2O2 reduction catalysis but also affords a new methodology for boosting the electrocatalytic abilities of spinel-type hybrid materials by designing a 3D structure and improving conductivity. (C) 2019 Elsevier B.V. All rights reserved.
机译:设计低成本,高效和非贵金属基电催化剂对于电化学传感器和能量转换装置的商业利用而相当必不可少。低成本的Cufe2O4尖晶石已被广泛研究电化学传感器和催化剂中的电催化剂。然而,散装CuFe2O4中活性位点的低利用率和Cufe2O4的差的电导率不变地限制催化效率的升级。这里,通过利用容易的电纺技术并且不涉及任何模板或表面活性剂,我们成功地设计了由丰富的超细CuFe2O4晶体偶联多孔碳纳米线编织的三维(3D)分层多孔结构(表示为CuFe2O4 / PCF)。表征结果验证了CUFE2O4 / PCF的3D网状纹理结构。特别是,阶级多孔结构,高表面积和丰富的碳边缘提高了微小的Cufe2O4晶体的均匀分散体;这些显然促进了电化学可用的CuFe2O4活性位点的量,同时降低了在电催化过程中CuFe2O4 / PCF的质量传输电阻。同时,引入碳基质可以急剧增强CuFe2O4 / PCF纳米线的电导率。所有这些结构和物理性能的进步都真正对H2O2还原和氧气进化反应(Oer)催化的CuFe2O4 / PCF进行了巨大的进展,与本体CuFe2O4相比。例如,CuFe2O4 / PCF催化剂的高灵敏度为69.18μmmm(-1)cm(-2),低检测限为1.20μmm mm,宽线性范围为0.11-22.0mm,用于H2O2感测。同时,CuFe2O4 / PCF催化剂只需要1.589 V(与可逆氢电极)的潜在值,以实现1.0 m KOH 10 mA cm(-2)的oer催化电流密度,仅显示一个小的tafel斜率OER的89.34 MV DEC(-1)。我们Cufe2O4 / PCF纳米线的催化剂设计策略不仅证明了oer和h2O2还原催化剂的新型高效非贵金属催化剂的成功设计,而且还提供了一种新的方法,用于提高尖晶石型杂交的电催化能力通过设计3D结构并提高电导率来实现材料。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
  • 作者单位

    Kunming Univ Sci &

    Technol Fac Met &

    Energy Engn Natl &

    Local Joint Engn Lab Lithium Ion Batteries Key Lab Adv Battery Mat Yunnan Prov Kunming 650093 Yunnan Peoples R China;

    Kunming Univ Sci &

    Technol Fac Met &

    Energy Engn Natl &

    Local Joint Engn Lab Lithium Ion Batteries Key Lab Adv Battery Mat Yunnan Prov Kunming 650093 Yunnan Peoples R China;

    Kunming Univ Sci &

    Technol Fac Met &

    Energy Engn Natl &

    Local Joint Engn Lab Lithium Ion Batteries Key Lab Adv Battery Mat Yunnan Prov Kunming 650093 Yunnan Peoples R China;

    Kunming Univ Sci &

    Technol Fac Met &

    Energy Engn Natl &

    Local Joint Engn Lab Lithium Ion Batteries Key Lab Adv Battery Mat Yunnan Prov Kunming 650093 Yunnan Peoples R China;

    Kunming Univ Sci &

    Technol Fac Mat Sci &

    Engn Kunming 650093 Yunnan Peoples R China;

    Kunming Univ Sci &

    Technol Fac Met &

    Energy Engn Natl &

    Local Joint Engn Lab Lithium Ion Batteries Key Lab Adv Battery Mat Yunnan Prov Kunming 650093 Yunnan Peoples R China;

    Northeast Normal Univ Key Lab Nanobiosensing &

    Nanobioanal Univ Jilin P Natl &

    Local United Engn Lab Power Batteries Dept Chem Minist Educ Key Lab Polyoxometalate Sci Changchun Jilin Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 合金学与各种性质合金;金属材料;
  • 关键词

    CuFe2O4; Electrospinning; H2O2 reduction; Oxygen evolution reaction; Porous carbon nanowires;

    机译:CUFE2O4;静电纺丝;H2O2减少;氧气进化反应;多孔碳纳米线;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号