首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Microstructure and mechanical characteristics of multi-layered materials composed of 316L stainless steel and ferritic steel produced by direct energy deposition
【24h】

Microstructure and mechanical characteristics of multi-layered materials composed of 316L stainless steel and ferritic steel produced by direct energy deposition

机译:由316L不锈钢和直接能量沉积产生的多层材料组成的多层材料的微观结构和机械特性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In the present study, we investigated the feasibility of fabricating multi-layered materials (MLMs) composed of austenitic stainless steel (316L) and ferritic steel (P21) using one of the additive manufacturing technologies, direct energy deposition (DED). With DED, an intermediate buffer layer is introduced between a bottom (P21) and a top (316L) layer. The relative compositions (wt%) of the three layers are 0:100, 50:50, and 100:0. Microstructure and mechanical properties were characterized via optical microscopy, electron backscatter diffraction (EBSD), Vickers microhardness, and miniaturized tensile testing in conjunction with digital image correlation (DIC). Finite element simulations were also conducted to obtain the local stress and strain states in the MLMs to elucidate the bulk plastic deformation behavior. The main finding was that the intermediate buffer layer, when processed with a mixture of P21 and 316L alloys, exhibited superior mechanical properties such as continuous yielding, a low yield to tensile strength, and a high work-hardening rate. The macroscopic deformation behavior was related to the initial microstructure that consisted of a small fraction of retained austenite and fine alpha' martensite. During a compression test to study the bulk deformation behavior, MLMs with an intermediate buffer layer exhibited a relatively superior load-carrying capacity compared with MLMs without an intermediate buffer layer. (C) 2018 Elsevier B.V. All rights reserved.
机译:在本研究中,我们研究了使用一种添加剂制造技术,直接能量沉积(DED)制造由奥氏体不锈钢(316L)和铁素体钢(P21)构成的多层材料(MLM)的可行性。通过DED,在底部(P21)和顶部(316L)层之间引入中间缓冲层。三层的相对组合物(WT%)为0:100,50:50和100:0。通过光学显微镜,电子反向散射衍射(EBSD),维氏微硬度和集小型化拉伸测试结合数字图像相关(DIC),表征了微观结构和机械性能。还进行了有限元模拟以获得MLM中的局部应力和应变状态,以阐明散装塑性变形行为。主要发现是中间缓冲层,当用P21和316L合金的混合物处理时,表现出优异的机械性能,例如连续屈服,抗拉强度的低产率,以及高的工作 - 硬化速率。宏观变形行为与初始微观结构有关,该初始微观结构包括一小部分保留的奥氏体和细α马氏体。在压缩试验期间,研究体积变形行为,具有中间缓冲层的MLM与没有中间缓冲层的MLM相比表现出相对优越的负载承载能力。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号