...
【24h】

Direct van der Waals epitaxy of stress-free GaN films on PECVD grown graphene

机译:直接van der Waals在Pecvd Growrow Graphene上无压GaN薄膜的外延

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Residual stress is generated in GaN epitaxial layers due to the mismatch during GaN epitaxy on sapphire using the traditional method. Therefore, the use of graphene to reduce residual stress and dislocation densities in GaN epitaxy has become an important research direction. However, growing a stress-free GaN film on graphene substrate remains challenge. In this work, we directly grew graphene on sapphire via plasma enhanced chemical vapor deposition (PECVD) to obtain an epitaxial graphene with characteristic orientation, and ultra-low stress GaN films can then be obtained through metal organic chemical vapor deposition (MOCVD) assisted with the sputtering AlN buffer layer. Through this method, we successfully obtained continuous and flat GaN films with ultra-low biaxial compressive stress (0.023 GPa) without the complicated stress engineering during epitaxial growth. First principle calculation was employed to confirm that the characteristic orientation of epitaxial graphene is crucial to release the stress in GaN. The obtained GaN films can also be easily transferred because of small van der Waals force on graphene. The transferred GaN heterojunction was directly fabricated into a metal-insulator-semiconductor (MIS) device from which typical electrical properties can be obtained. Our work reveals the stress-releasing mechanism and excellent stress-releasing effect of graphene and provides a new epitaxial strategy to guide crystallographic epitaxy. (C) 2020 Elsevier B.V. All rights reserved.
机译:由于使用传统方法在蓝宝石上的GaN外延中的不匹配,在GaN外延层中产生残余应力。因此,使用石墨烯以降低GaN外延的残余应力和位错密度已成为重要的研究方向。然而,在石墨烯基材上生长无应力的GaN薄膜仍然是挑战。在这项工作中,我们通过等离子体增强的化学气相沉积(PECVD)直接在蓝宝石上生长石墨烯,得到具有特征取向的外延石墨烯,然后通过金属有机化学气相沉积(MOCVD)获得超低应力GaN膜溅射AlN缓冲层。通过这种方法,我们在外延生长期间成功地获得了具有超低双轴压缩应力(0.023GPa)的连续和扁平的GaN薄膜,而无需复合的应力工程。使用第一个原理计算来证实外延石墨烯的特征取向至关重要,以释放GaN中的应力。由于石墨烯的小范德华力,所获得的GaN薄膜也可以容易地转移。将转移的GaN异质结直接制成金属 - 绝缘体 - 半导体(MIS)装置,从中可以获得典型的电性能。我们的工作揭示了石墨烯的应力释放机制和优异的应力释放效果,并提供了一种引导晶体外延的新外延策略。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号