首页> 外文期刊>Surface & Coatings Technology >Laminar plasma jet surface hardening of the U75V rail steel: Insight into the hardening mechanism and control scheme
【24h】

Laminar plasma jet surface hardening of the U75V rail steel: Insight into the hardening mechanism and control scheme

机译:U75V轨钢的层压等离子体喷射表面硬化:洞察硬化机构和控制方案

获取原文
获取原文并翻译 | 示例
           

摘要

Insight into the mechanism of laminar plasma jet (LPJ) surface hardening is critical for the controllable preparation of ideal hardened layer to improve the wear and fatigue resistance of U75V rail steel. To reveal the surface hardening mechanism, a series of surface hardening experiments on the U75V rail steel surface were performed under different working parameters using a self-designed laminar plasma generator. Results showed that the geometrical dimension, microstructure and hardness distribution of the hardened layer can be adjusted by changing the arc current, the scanning velocity and the anode nozzle diameter. Further characterization and numerical simulation suggested that the geometrical dimension of the hardened layer is determined by the heat affected zone over the critical austenitizing temperature (730 degrees C), while its microstructure and hardness distribution depend on the local cooling rate below the critical austenitizing temperature. By changing the working parameters, the heat flux density applied on the workpiece surface and the heating time can be controlled to obtain the desired temperature field within the heat affected zone. Not only a full hardened layer but also a transition layer consisting of martensite, pearlite, ferrite and carbides can be achieved. This configuration of LPJ surface hardening process for U75V rail steel indicates that the LPJ surface hardening with the ability of producing hardness gradient is promising for reducing the risk of crack generation on the rail.
机译:洞察层压等离子体射流(LPJ)表面硬化的机理对于理想硬化层的可控制剂至关重要,以提高U75V轨钢的耐磨性和疲劳性。为了揭示表面硬化机构,使用自行设计的层等离子体发生器在不同的工作参数下进行U75V轨钢表面上的一系列表面硬化实验。结果表明,通过改变电弧电流,扫描速度和阳极喷嘴直径,可以调节硬化层的几何尺寸,微观结构和硬度分布。进一步表征和数值模拟表明,硬化层的几何尺寸由热影响区域通过临界奥氏体化温度(730℃)确定,而其微观结构和硬度分布取决于临界奥氏体化温度以下的局部冷却速率。通过改变工作参数,可以控制在工件表面和加热时间上施加的热通量密度以获得热影响区域内的所需温度场。不仅可以实现完全硬化层,还可以实现由马氏体,珠光体,铁氧体和碳化物组成的过渡层。这种用于U75V轨钢的LPJ表面硬化过程的配置表明,具有生产硬度梯度的能力的LPJ表面硬化是有希望降低轨道上裂缝产生的风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号