首页> 外文期刊>Surface & Coatings Technology >The influence of chemical composition of Ni-based alloys on microstructure and mechanical properties of plasma paste borided layers
【24h】

The influence of chemical composition of Ni-based alloys on microstructure and mechanical properties of plasma paste borided layers

机译:Ni基合金化学成分对等离子体浆料硼化层微观结构和力学性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Plasma paste boriding at temperature of 800 degrees C (1073 K) for 3 h was applied in order to produce hard ceramic phases on the surface of Ni-based alloys with various chromium concentrations. The microstructure of boride layer depended on the chemical composition of substrate material. The increase in chromium concentration was the reason for reducing the average thickness of the boride layers. Hence, the average thicknesses were as follows: 54.24 +/- 3.07 mu m for Nickel 201-alloy, 44.41 +/- 2.24 mu m for Inconel (R) 600-alloy, 41.31 +/- 1.56 mu m for Nimonic (R) 80A-alloy. The chemical and phase composition of the investigated layers strongly influenced their hardness (HVIT), Young's modulus (E-IT) and fracture toughness (K-c). The boride layer, produced on Nickel 201-alloy, was characterized by lowest average hardness of 17.97 +/- 1.59 GPa and Young's modulus of 217.89 +/- 20.72 GPa. The highest values of HVIT and E-IT (22.96 +/- 4.30 GPa and 291.95 +/- 25.64 GPa, respectively) were obtained for boride layer on Nimoni (R) 80A-alloyin which the highest chromium concentration occurred. It was also confirmed that the increase in chromium concentration in substrate material strongly influenced the fracture toughness of the produced layers. The plasma-paste borided layer, in which only nickel borides were identified, was characterized by the highest average fracture toughness (K-c) of 1.477 +/- 0.86 MPa.m(1/2). Whereas, the boride layer on Nimonic (R) 80A-alloy (Cr content of 19.52 wt%) was characterized by about tree time lower fracture toughness (K-c = 0.534 +/- 0.44 MPa.m(1/2)).
机译:施用在800℃(1073k)的温度下施用3小时的血浆浆料,以在具有各种铬浓度的Ni基合金表面上产生硬陶瓷相。硼化物层的微观结构依赖于基材材料的化学成分。铬浓度的增加是降低硼化物层的平均厚度的原因。因此,平均厚度如下:用于镍201-合金的54.24 +/-3.07μm,用于Inconel(r)600-合金,41.31 +/- 1.56 mu m为nimonic(r)的44.41 +/- 2.24 mu m 80A合金。研究层的化学和相组成强烈影响了它们的硬度(HVIT),杨氏模量(E-IT)和断裂韧性(K-C)。在镍201-合金上制造的硼化物层的特征在于17.97 +/- 1.59 GPA和杨氏模量的最低平均硬度和217.89 +/- 20.72GPa。对于最高铬浓度的氮化物层,获得HVIT和E-IT的最高值(分别为22.96 +/- 4.30GPa和291.95 +/- 25.64GPa)。还证实,基材材料中铬浓度的增加强烈影响所生产的层的断裂韧性。通过鉴定镍硼化镍的等离子体粘附层,其特征在于1.477 +/- 0.86MPa.m(1/2)的最高平均裂缝韧性(K-C)。然而,在NiMONOC(R)80a-合金上的硼化物层(Cr含量为19.52wt%),其特征在于树时间较低的断裂韧性(K-C = 0.534 +/- 0.44MPa.m(1/2))。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号