首页> 外文期刊>The Journal of Physiology >Functional up‐regulation of the M‐current by retigabine contrasts hyperexcitability and excitotoxicity on rat hypoglossal motoneurons
【24h】

Functional up‐regulation of the M‐current by retigabine contrasts hyperexcitability and excitotoxicity on rat hypoglossal motoneurons

机译:通过重载的M-Currow函数的功能上调对比大鼠低槽运动神经元的过度尺寸和兴奋毒性

获取原文
获取原文并翻译 | 示例
           

摘要

Key points Excessive neuronal excitability characterizes several neuropathological conditions, including neurodegenerative diseases such as amyotrophic lateral sclerosis. Hypoglossal motoneurons (HMs), which control tongue muscles, are extremely vulnerable to this disease and undergo damage and death when exposed to an excessive glutamate extracellular concentration that causes excitotoxicity. Our laboratory devised an in vitro model of excitotoxicity obtained by pharmacological blockade of glutamate transporters. In this paradigm, HMs display hyperexcitability, collective bursting and eventually cell death. The results of the present study show that pharmacological up‐regulation of a K + current (M‐current), via application of the anti‐convulsant retigabine, prevented all hallmarks of HM excitotoxicity, comprising bursting, generation of reactive oxygen species, expression of toxic markers and cell death. ○ Our data may have translational value to develop new treatments against neurological diseases by using positive pharmacological modulators of the M‐current. Abstract Neuronal hyperexcitability is a symptom characterizing several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). In the ALS bulbar form, hypoglossal motoneurons (HMs) are an early target for neurodegeneration because of their high vulnerability to metabolic insults. In recent years, our laboratory has developed an in vitro model of a brainstem slice comprising the hypoglossal nucleus in which HM neurodegeneration is achieved by blocking glutamate clearance with dl ‐threo‐β‐benzyloxyaspartate (TBOA), thus leading to delayed excitotoxicity. During this process, HMs display a set of hallmarks such as hyperexcitability (and network bursting), reactive oxygen species (ROS) generation and, finally, cell death. The present study aimed to investigate whether blocking early hyperexcitability and bursting with the anti‐convulsant drug retigabine was sufficient to achieve neuroprotection against excitotoxicity. Retigabine is a selective positive allosteric modulator of the M‐current ( I M ), an endogenous mechanism that neurons (comprising HMs) express to dampen excitability. Retigabine (10?μ m ; co‐applied with TBOA) contrasted ROS generation, release of endogenous toxic factors into the HM cytoplasm and excitotoxicity‐induced HM death. Electrophysiological experiments showed that retigabine readily contrasted and arrested bursting evoked by TBOA administration. Because neuronal I M subunits (Kv7.2, Kv7.3 and Kv7.5) were expressed in the hypoglossal nucleus and in functionally connected medullary nuclei, we suggest that they were responsible for the strong reduction in network excitability, a potent phenomenon for achieving neuroprotection against TBOA‐induced excitotoxicity. The results of the present study may have translational value for testing novel positive pharmacological modulators of the I M under pathological conditions (including neurodegenerative disorders) characterized by excessive neuronal excitability.
机译:关键点过多的神经元兴奋性表征了几种神经病理学条件,包括神经变性疾病,例如肌营养的侧面硬化。控制舌肌(HMS)(HMS)控制舌肌的极大易受这种疾病的伤害,并且在暴露于导致兴奋毒性的过度谷氨酸细胞外浓度时经历损伤和死亡。我们的实验室设计了通过药理学阻滞的谷氨酸转运蛋白的体外脆弱毒性模型。在此范例中,HMS显示过氧化性,集体破裂和最终的细胞死亡。本研究的结果表明,通过施用抗惊厥药甲蛋白的K +电流(M-Current)的药理上调阻止了HM兴奋毒性的所有标志,包括突破,产生反应性氧物种,表达有毒标志物和细胞死亡。 ○通过使用M-Current的阳性药理调节剂,我们的数据可能具有翻译价值,以开发针对神经疾病的新治疗。摘要神经元过度尺寸是表征几种神经变性障碍的症状,包括肌营养的侧面硬化剂(ALS)。在Als泡块形式中,由于对代谢损伤的高脆性,低血曲线运动神经元(HMS)是神经变性的早期靶标。近年来,我们的实验室已经开发了一种脑干脑干切片的体外模型,该脑干切片包含低血压核,其中通过将谷氨酸间隙与D1 -Threo-β-苄氧基海地(TboA)阻断谷氨酸间隙来实现HM神经变性,因此导致延迟吞噬毒性。在此过程中,HMS显示一组标志,如过度兴奋(和网络破裂),活性氧(ROS)的产生,并最终细胞死亡。本研究旨在探讨阻断早期过度抑制性和抗惊厥药物克拉替吩的爆发是否足以实现针对兴奋毒性的神经保护。重试标是M-current(I m)的选择性正变构调制剂,内源性机制,即神经元(包含HMS)表达以抑制兴奋性。重新纳米(10?μm;与Tboa共同施用)对比ROS生成,释放内源性毒性因素进入HM细胞质和兴奋毒性诱导的HM死亡。电生理实验表明,通过TBOA给药诱导的浸扣式对比和被捕的爆裂。因为神经元IM亚基(Kv7.2,Kv7.3和Kv7.5)在低核核和功能连接的髓质核中表达,所以我们建议他们负责网络兴奋的强烈降低,实现神经保护的有力现象针对Tboa诱导的兴奋毒性。本研究的结果可能具有在病理条件(包括神经变性障碍)的病理条件下测试IM的新型药理调节剂的转化值,其特征在于过度神经元兴奋性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号