首页> 外文期刊>The Journal of Physiology >Revisiting human cerebral blood flow responses to augmented blood pressure oscillations
【24h】

Revisiting human cerebral blood flow responses to augmented blood pressure oscillations

机译:重新审视人类脑血流应对增强血压振荡的响应

获取原文
获取原文并翻译 | 示例
           

摘要

Key points Cerebral autoregulation is most effective in buffering against pressure fluctuations slower than 0.03?Hz (~30?s). This suggests that frequency bands for characterizing cerebral autoregulation should be redefined Low cross‐spectral coherence below 0.03?Hz highlights the limitations of transfer function approaches Haemodynamic changes induced by lower body pressure could not fully explain the differences in autoregulation estimated from spontaneous vs . augmented fluctuations, and thus, observations of spontaneous fluctuations should not be relied on whenever possible. Abstract There is currently little empirical basis for time scales that are considered to be most significant in cerebrovascular counter‐regulation of changes in arterial pressure. Although it is well established that cerebral autoregulation behaves as a ‘high‐pass’ filter, recommended frequency bands have been largely arbitrarily determined. To test effectiveness of cerebral autoregulation, we refined oscillatory lower body pressure (LBP) to augment resting pressure fluctuations below 0.1?Hz by a factor of two in 13 young male volunteers, and thoroughly characterized the time and frequency responses of cerebral autoregulation. We observed that despite a threefold increase in arterial pressure power 0.03?Hz with oscillatory LBP, there was no change in cerebral blood flow power, indicating near perfect counter‐regulation. By contrast, in the range 0.03–0.10?Hz, both cerebral blood flow and arterial pressure power more than doubled. Our data demonstrate that cerebral autoregulation is most effective in buffering against pressure fluctuations slower than 0.03?Hz (~30?s). This suggests that frequency bands of interest should be redefined and recording length should be increased considerably to account for this. Furthermore, low cross‐spectral coherence below 0.03?Hz, even when pressure fluctuations were augmented, highlights the uncertainty in transfer function approaches and the need to either report precision or use non‐linear approaches. Finally, haemodynamic changes induced by LBP could not fully explain the differences in autoregulation estimated from spontaneous vs . augmented fluctuations, and thus, observations of spontaneous fluctuations should not be relied on whenever possible.
机译:关键点脑自动调节最有效地缓冲压力波动慢于0.03?Hz(〜30?s)。这表明用于表征脑自动调节的频带应重新定义低于0.03的低频谱相干性突出显示转移函数接近较低体压诱导的血流动力学变化的局限性无法完全解释自发性VS估计的自动调节的差异。增强波动,因此,尽可能不应依赖自发波动的观察。摘要目前在脑血管反调节方面最显着的时间尺度几乎没有实际尺度的实证依据。尽管很好地确定,但是脑自动调节表现为“高通”过滤器,推荐频带已经大致确定。为了测试脑自动调节的有效性,我们通过13个年轻男性志愿者中的两倍于两次,通过13个年轻男性志愿者进行了两次,在13个年轻男性志愿者中,精致振荡的较低体压(LBP)以增加静脉静脉压力波动,并彻底表征了脑自动调节的时间和频率响应。我们观察到,尽管动脉压力的三倍增加了,但具有振荡的LBP的动脉压力且振动式LBP,脑血流量没有变化,表明接近完美的反调节。相比之下,在0.03-0.10Ω·赫兹范围内,脑血流和动脉压力的动力增加一倍多。我们的数据表明,脑自动调节最有效地缓冲压力波动慢于0.03?Hz(〜30μs)。这表明应该重新定义感兴趣的频段,并且应大大增加记录长度以考虑这一点。此外,即使增加压力波动,低于0.03·0.03·赫兹的低交叉光谱相干性也突出了转移函数方法的不确定性,并且需要报告精度或使用非线性方法。最后,LBP诱导的血动力学变化无法完全解释自发性VS估计的自动调节的差异。增强波动,因此,尽可能不应依赖自发波动的观察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号