首页> 外文期刊>The Journal of Physiology >The spiking and secretory activity of oxytocin neurones in response to osmotic stimulation: a computational model
【24h】

The spiking and secretory activity of oxytocin neurones in response to osmotic stimulation: a computational model

机译:催产素神经元响应渗透刺激的尖峰和分泌活性:计算模型

获取原文
获取原文并翻译 | 示例
           

摘要

Key points A quantitative model of oxytocin neurones that combines a spiking model, a model of stimulus–secretion coupling and a model of plasma clearance of oxytocin was tested. To test the model, a variety of sources of published data were used that relate either the electrical activity of oxytocin cells or the secretion of oxytocin to experimentally induced changes in plasma osmotic pressure. To use these data to test the model, the experimental challenges involved were computationally simulated. The model predictions closely matched the reported outcomes of the different experiments. Abstract Magnocellular vasopressin and oxytocin neurones in the rat hypothalamus project to the posterior pituitary, where they secrete their products into the bloodstream. In rodents, both vasopressin and oxytocin magnocellular neurones are osmoresponsive, and their increased spiking activity is mainly a consequence of an increased synaptic input from osmoresponsive neurons in regions adjacent to the anterior wall of the third ventricle. Osmotically stimulated vasopressin secretion promotes antidiuresis while oxytocin secretion promotes natriuresis. In this work we tested a previously published computational model of the spiking and secretion activity of oxytocin cells against published evidence of changes in spiking activity and plasma oxytocin concentration in response to different osmotic challenges. We show that integrating this oxytocin model with a simple model of the osmoresponsive inputs to oxytocin cells achieves a strikingly close match to diverse sources of data. Comparing model predictions with published data using bicuculline to block inhibitory GABA inputs supports the conclusion that inhibitory inputs and excitatory inputs are co‐activated by osmotic stimuli. Finally, we studied how the gain of osmotically stimulated oxytocin release changes in the presence of a hypovolaemic stimulus, showing that this is best explained by an inhibition of an osmotically regulated inhibitory drive to the magnocellular neurones.
机译:关键点的催产素结合了尖峰模型,刺激分泌耦合的模型和催产素的血浆清除率的模型的神经元的定量模型中测试。为了测试模型,各种公开的数据的源中使用的涉及任一的催产素细胞中的电活动或催产素的血浆中渗透压实验诱导的变化的分泌。要使用这些数据来测试模型中,参与实验的挑战进行了计算模拟。该模型预测密切配合不同的实验报告的结果。摘要大细胞抗利尿激素和催产素在大鼠下丘脑项目垂体后叶,在那里它们分泌自己的产品进入血液神经元。在啮齿动物中,两个加压素和催产素大细胞神经元是渗透应答,并且其增加的活性扣球主要的结果从渗透应答神经元在相邻于第三脑室的前壁的区域增加的突触输入。渗透刺激的加压素分泌,促进抗利尿作用,而催产素的分泌促进排钠。在这项工作中,我们测试的催产素对变化的公开证据细胞的扣球和分泌活性的先前公布的计算模型,在应对不同的挑战渗透扣球活性和血浆催产素浓度。我们表明,随着渗透应答输入一个简单的模型,这个模型催产素结合催产素细胞实现了惊人的接近匹配数据的不同来源。模型预测用荷包牡丹碱阻断抑制性GABA输入公布的数据进行比较支持这样的结论抑制性输入和兴奋性输入是共活化通过渗透刺激。最后,我们研究的渗透增益如何刺激催产素在低血容量性刺激的存在释放的变化,可见这是最好的一种渗透性的调控抑制开车到大细胞神经元的抑制解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号