...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Effect of Temperature on the Morphology and Anode Performance of Binder-Free Carbon Nanofiber/Nickel Cobalt Hydroxide and Carbon Nanofiber/Nickel Cobalt Oxide for Lithium-Ion Batteries
【24h】

Effect of Temperature on the Morphology and Anode Performance of Binder-Free Carbon Nanofiber/Nickel Cobalt Hydroxide and Carbon Nanofiber/Nickel Cobalt Oxide for Lithium-Ion Batteries

机译:温度对无粘合剂碳纳米纤维/镍氢氧化钴和碳纳米纤维/镍锂离子电池的形态和阳极性能的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Hierarchical composite materials composed of electrospun carbon nanofibers and binary nickel cobalt hydroxide (Ni-Co(OH)(2)) nanoflakes were synthesized for use as anodes for lithium-ion batteries. To clarify the effect of temperature on the structure and electrochemical performance of the composites, the ternary composite fibers were annealed at various temperatures. When the annealing temperature increased, the interconnected Ni-Co(OH)(2) nanoflakes on the carbon surface gradually converted to Ni-Co(OH)(2) nanoneedles. Subsequently, the chemical structure of Ni-Co(OH)(2) was transformed into binary nickel cobalt oxide (Ni-CoO) at 300 degrees C. Further annealing at 400 degrees C caused the aggregation of nanoneedles, forming flowerlike particles. The incorporation of Ni-Co(OH)(2) nanoflakes into carbon nanofibers resulted in a substantial increase in the specific capacity compared with that of the pure carbon nanofibers. The increased specific capacity was because of the synergistic effects of the high theoretical capacity of Ni-Co(OH)(2) and easily accessible charge transport in the carbon nanofiber network. The specific capacity of the composite fibers increased with the annealing temperature and reached a maximum of 64S mAh/g at a current density of 150 mA/g at 300 degrees C. The increased specific capacity was mainly attributed to the change in the specific surface area, mesopore volume, and electrical conductivity of the composite fibers with temperature.
机译:由电纺碳纳米纤维和二元镍钴(Ni-Co(OH)(2))组成的等级复合材料(Ni-Co(OH))纳米薄片用作锂离子电池的阳极。为了阐明温度对复合材料的结构和电化学性能的影响,三元复合纤维在各种温度下退火。当退火温度升高时,碳表面上的互连的Ni-Co(OH)(2)纳米薄片逐渐转化为Ni-Co(OH)(2)纳米甲醛。随后,将Ni-Co(OH)(2)的化学结构在300℃下转化为二元镍钴氧化物(Ni-CoO)。在400℃下进一步退火导致纳尼块的聚集,形成花型颗粒。将Ni-Co(OH)(2)纳米薄膜掺入碳纳米纤维中导致比与纯碳纳米纤维相比的比容量的显着增加。增加的具体容量是因为Ni-Co(OH)(2)的高理论能力的协同效应,并且在碳纳米恐怖网络中易于访问的电荷输送。复合纤维的比容量随着退火温度的增加,并且在300摄氏度下的电流密度为150mA / g的最大达到64s mah / g。增加的具体容量主要归因于特定表面积的变化,具有温度的复合纤维的中孔体积和电导率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号