...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >New Theoretical Insights into the Contributions of Poly(methylbenzene) and Alkene Cycles to the Methanol to Propene Process in H-FAU Zeolite
【24h】

New Theoretical Insights into the Contributions of Poly(methylbenzene) and Alkene Cycles to the Methanol to Propene Process in H-FAU Zeolite

机译:新的理论见解对H-FAU沸石在H-FAU沸石中甲醇中甲醇的贡献和烯丙烯醇的贡献

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The contributions of the poly(methylbenzene) (polyMB) and alkene cycles to the methanol to propene (MTP) process in H-FAU zeolite have been investigated by a two-layer ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) method, which is important to understand the nature of formation of propene in zeolite with large pore sizes. The calculated results demonstrate that the different pathways in the polyMB cycle occur in the following order of reactivity: methyl-transfer pathway > spiro pathway > direct internal H-shift > paring pathway. The polyMB cycle is more competitive than the alkene cycle for the MTP process in H-FAU, which is different from the previous results on H-ZSM-S. Introduction of Li+ and Ag+ cations into FAU zeolite does not reduce the free energy barriers of the methylation steps involved in polyMB and alkene cycles, indicating that the experimental efforts to improve propene selectivity probably should focus on the physical effect of Li+ and Ag+ cations. For the step of formation of propene in both cycles, the difference in charge densities suggests a clear electron transfer between the propene fragment and the aromatic ring or propoxy group. Decomposing ONIOM energy barriers into quantum mechanics and molecular mechanics contributions suggests that the stabilizing effect of the zeolite environment on transition states mainly originates from the van der Waals interactions for the spiro and methyl-transfer pathways in the polyMB cycle, but from the electrostatic interactions for the alkene cycle. Generally speaking, the formation step of propene is entropy-increased. The direct internal H-shift and paring pathways are entropy-decreased. The entropy effect in the alkene cycle is larger than that in the polyMB cycle due to the larger entropic barriers.
机译:通过双层ONIOM(我们自己的N层集成分子轨道和分子力学)研究了聚(甲基苯)(POLMALB)和烯烃循环到H-FAU沸石中丙烯(MTP)方法的丙烯(MTP)方法的贡献方法,了解沸石中丙烯的形成性质,具有大孔径大。计算结果表明,聚合物循环中的不同途径在以下反应物种顺序中发生:甲基转移途径>螺途径>直接内部H型换档>剖钉途径。聚合物循环比H-FAU的MTP过程中的烯烃循环更竞争,这与先前的H-ZSM-S对先前的结果不同。 Li +和Ag +阳离子的引入FAU沸石不会减少polymB和烯烃循环中涉及的甲基化步骤的自由能屏障,表明改善丙烯选择性的实验努力可能应关注Li +和Ag +阳离子的物理效应。对于在两个循环中形成丙烯的步骤,电荷密度的差异表明丙烯片段和芳环或丙氧基之间的透明电子转移。分解oniom能量屏障进入量子力学和分子力学贡献表明,沸石环境对转型状态的稳定作用主要来自Polyb循环中螺毒剂和甲基转移途径的范围相互作用,但是从静电相互作用烯循环。一般来说,丙烯的形成步骤是熵增加的。直接内部的H型转变和削波途径是熵减少。由于较大的熵屏障,烯烃循环中的熵效应大于聚合物周期中的熵效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号