首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >First-Principles Based Microkinetic Modeling of CO2 Reduction at the Ni/SDC Cathode of a Solid Oxide Electrolysis Cell
【24h】

First-Principles Based Microkinetic Modeling of CO2 Reduction at the Ni/SDC Cathode of a Solid Oxide Electrolysis Cell

机译:基于第一原理的基于二氧化碳电解细胞Ni / SdC阴极的CO2减少的微急性建模

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding of the CO2 electroreduction mechanism at the three-phase boundary (TPB) is of great importance for the development of a solid oxide electrolysis cell (SOEC). In this study, the effect of oxygen vacancy locations on the CO2 reduction reaction (CO2RR) at the TPB of Ni(111)/ samarium-doped ceria (SDC) surface was investigated using periodic density functional theory (DFT) + U calculations. It was found that interface oxygen vacancy can notably boost CO, adsorption and reduction. Based on DFT results, a microkinetic analysis was conducted to determine the rate-controlling step under various solid oxide electrolysis cell operating voltages at 1000 K. Possible charge transfer steps, including one- or two-electron charge transfer, were considered and discussed. The analysis reveals that, on Ni/SDC with noninterface oxygen vacancy, the rate-controlling step will change from the oxygen spillover step to the CO desorption step with an increase in cathode overpotential. On Ni/SDC with interface oxygen vacancy, CO desorption is the rate-controlling step regardless of the electrode overpotentials.
机译:理解三相边界(TPB)的CO 2电荷机理对于显着的氧化物电解细胞(SOEC)的发展具有重要意义。在该研究中,使用周期性密度泛函理论(DFT)+ U计算研究了Ni(111)/钐掺杂的二氧化铈(SDC)表面TPB的CO 2还原反应(CO 2R)对CO 2还原反应(CO 2R)的影响。发现界面氧空位可以尤其可以提高CO,吸附和还原。基于DFT结果,进行了微酮型分析以确定在1000K的各种固体氧化物电解电池工作电压下的速率控制步骤。考虑并讨论包括单电子电荷转移的可能的电荷转移步骤。该分析显示,在具有非接口氧空位的NI / SDC上,速率控制步骤将随着阴极的增加而从氧气溢出步骤变为CO解吸步骤。在具有界面氧气空位的NI / SDC上,CO解吸是无论电极过电都能如何控制速率控制步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号